如何证明证明分段函数在分段点可导某点可导?

大家好,又见面了,我是你们的朋友全栈君。

  • 复变函数是由一个复数域映射到另一个复数域的关系。判断复变函数是否可导可导:u( x , y ) 和 v ( x , y ) 在点 ( x, y ) 可微, 并且在该点 满足柯西—黎曼方程。解析函数是复变函数在一个区域内可导。可用定义法计算复变函数在一点的导数 或 利用常见初等函数的导数以及导数的运算法则求导。
  • 柯西定理:已知一复变函数的原函数,可求其积分。柯西定理证明了若一正向封闭区域内(逆时针),若所积函数解析,则其积分为零。
  • 柯西积分公式:当复变函数在封闭区域内解析,则在该封闭区域内任一点的值由f(z)/z-z0在边界上的积分所决定。

如果一个函数在某点解析,那么它的各阶导函数在该点仍解析 。设 f ( z)在简单正向闭曲线 C 及其所围区域 D 内处处解析, z0 为 D 内任一点, 那么:

由此,一般解析初等函数可以展开为对应泰勒级数。且部分函数可展开为含负幂次项的洛朗级数。 根据展开函数的级数在某一点或无穷远点的负幂次项的个数,可将奇点类型分为:可去奇点、极点、本性奇点。同时,根据留数定理可求出对应展开级数的C-1项的系数从而求出某封闭曲线上的积分。留数对一些特殊的定积分的计算。

我要回帖

更多关于 证明分段函数在分段点可导 的文章

 

随机推荐