概率论问题求助,4.16怎么做呀?

《概率论与数理统计第三版课后习题答案》由会员分享,可在线阅读,更多相关《概率论与数理统计第三版课后习题答案(26页珍藏版)》请在人人文库网上搜索。

1、习题一1.1 写出下列随机试验的样本空间:(1) 解:连续5 次都命中,至少要投5次以上,故;(2) 解:;(3) 解:医院一天内前来就诊的人数理论上可以从0到无穷,所以;(4)(5) 解:用0 表示合格, 1 表示不合格,则;(6) 解:用表示最低气温, 表示最高气温;考虑到这是一个二维的样本空间,故: ;(7) 解:;(8) 解:;1.2 (1) ;(2) (3)(4) (5) (6)(7) (8)1.3 设样本空间, 事件=, 具体写出下列各事件:(1);(2) =; (3) =; (4) = 1.6 解:由于故,而由加法公式,有:1.7 解:(1) 昆虫出现残翅或退化性眼睛对应事件概率

2、为:(2)由于事件可以分解为互斥事件,昆虫出现残翅, 但没有退化性眼睛对应事件 概率为:(3) 昆虫未出现残翅, 也无退化性眼睛的概率为:.1.8 解:(1) 由于,故显然当时P(AB) 取到最大值。 最大值是0.6.(2) 由于。显然当时P(AB) 取到最小值,最小值是0.4.1.9 解:因为 P(AB) = 0,故 P(ABC) = 0.至少有一个发生的概率为:1.10 解(1)通过作图,可以知道,(2) 1.11 解:用表示事件“杯中球的最大个数为个” =1,2,3。三只球放入四只杯中,放法有种,每种放法等可能。对事件:必须三球放入三杯中,每杯只放一球。放法432种,故(选排列:好比3个

3、球在4个位置做排列)。对事件:必须三球都放入一杯中。放法有4种。(只需从4个杯中选1个杯子,放入此3个球,选法有4种),故。1.12解:此题为典型的古典概型,掷一颗匀称的骰子两次基本事件总数为36。.出现点数和为“3”对应两个基本事件(1,2),(2,1)。故前后两次出现的点数之和为3的概率为。同理可以求得前后两次出现的点数之和为4,5 的概率各是。(1) 1.13 解:从10个数中任取三个数,共有种取法,亦即基本事件总数为120。(1) 若要三个数中最小的一个是5,先要保证取得5,再从大于5的四个数里取两个,取法有种,故所求概率为。(2) 若要三个数中最大的一个是5,先要保证取得5,再从小于

4、5的五个数里取两个,取法有种,故所求概率为。1.14 解:分别用表示事件:(1) 取到两只黄球; (2) 取到两只白球; (3) 取到一只白球, 一只黄球.则。1.15 解:由于,故 1.16解:(1) (2)注意:因为,所以。1.17 解:用表示事件“第次取到的是正品”(),则表示事件“第次取到的是次品”()。(1) 事件“在第一、第二次取到正品的条件下, 第三次取到次品”的概率为:。(2) 事件“第三次才取到次品”的概率为(3) 事件“第三次取到次品”的概率为:此题要注意区分事件(1)、(2)的区别,一个是求条件概率,一个是一般的概率。再例如,设有两个产品,一个为正品,一个为次品。用表示事

5、件“第次取到的是正品”(),则事件“在第一次取到正品的条件下, 第二次取到次品”的概率为:;而事件“第二次才取到次品”的概率为:。区别是显然的。1.18。解:用表示事件“在第一箱中取出两件产品的次品数”。用表示事件“从第二箱中取到的是次品”。则,根据全概率公式,有:1.19解:设表示事件“所用小麦种子为等种子”,表示事件“种子所结的穗有50 颗以上麦粒”。则,根据全概率公式,有:1.20 解:用表示色盲,表示男性,则表示女性,由已知条件,显然有:因此:根据贝叶斯公式,所求概率为:1.21 解:用表示对试验呈阳性反应,表示癌症患者,则表示非癌症患者,显然有:因此根据贝叶斯公式,所求概率为:1.2

6、2 解:设,则(1)根据全概率公式,该批产品的合格率为0.94.(2)根据贝叶斯公式,同理可以求得,因此,从该10 箱中任取一箱, 再从这箱中任取一件, 若此件产品为合格品, 此件产品由甲、乙、丙三厂生产的概率分别为:。1.23解:记=目标被击中,则1.24 解:记=四次独立试验,事件A 至少发生一次,=四次独立试验,事件A 一次也不发生。而,因此。所以三次独立试验中, 事件A

7、AB)当BA时,P(A-B)=P(A)-P(B)当A=时,P()=1- P(B)(12)条件概率定义 设A、B是两个事件,且P(A)0,则称为事件A发生条件下,事件B发生的条件概率,记为。(16)贝叶斯公式,i=1,2,n。此公式即为贝叶斯公式。第二章 随机变量2.1

9、P(0.54)= P(2)2.8解:设应配备m名设备维修人员。又设发生故障的设备数为X,则。依题意,设备发生故障能及时维修的概率应不小于0.99,即,也即因为n=180较大,p=0.01较小,所以X近似服从参数为的泊松分布。查泊松分布表,得,当m+1=7时上式成立,得m=6。故应至少配备6名设备维修人员。2.9解:一个元件使用1500小时失效的概率为 设5个元件使用1500小时失效的元件数为Y,则。所求的概率为2.10(1)假设该地区每天的用电量仅有80万千瓦时,则该地区每天供电量不足的概率为:(2)假设该地区每天的用电量仅有90万千瓦时,则该地区每天供电量不足的概率为:2.11解:要使方程有

10、实根则使解得K的取值范围为,又随机变量KU(-2,4)则有实根的概率为2.12解:XP()= P()(1)(2)(3)2.13解:设每人每次打电话的时间为X,XE(0.5),则一个人打电话超过10分钟的概率为又设282人中打电话超过10分钟的人数为Y,则。因为n=282较大,p较小,所以Y近似服从参数为的泊松分布。所求的概率为2.14解:(1)(2)2.15解:设车门的最低高度应为a厘米,XN(170,62)厘米2.19解:X的可能取值为1,2,3因为;

11、当时,当时,当时,X-112P0.30.50.2(2)Y120.80.22.22(1)设FY(y),分别为随机变量Y的分布函数和概率密度函数,则对求关于y的导数,得 (2)设FY(y),分别为随机变量Y的分布函数和概率密度函数,则当时,当时,有对求关于y的导数,得 (3)设FY(y),分别为随机变量Y的分布函数和概率密度函数,则当时,当时,对求关于y的导数,得 2.23

12、.4(1)a= (2)(3) 3.5解:(1)(2)3.6解:3.7参见课本后面P227的答案3.8 3.9解:X的边缘概率密度函数为:当时,当时,Y的边缘概率密度函数为: 当时, 当时,3.10 (1)参见课本后面P227的答案(2) 3.11参见课本后面P228的答案 3.12参见课本后面P228的答案3.13(1) 对于时,所以 对于时,所以 3.14X

13、缘分布12ab+a+bY的边缘分布a+b+1由独立的条件则可以列出方程 解得 3.16 解(1)在3.8中 当, 时,当或时,当或时,所以,X与Y之间相互独立。 (2)在3.9中, 当,时, ,所以X与Y之间不相互独立。3.17解:故X 与Y相互独立 3.18参见课本后面P228的答案第四章 数字特征4.1 解: 甲机床生产的零件次品数多于乙机床生产的零件次品数,又两台机床的总的产量相同乙机床生产的零件的质量较好。4.2 解:X的所有可能取值为:3,4,5 . 4.3参见课本230页参考答案4.4解:4.6参考课本230页参考答案4.7解:设途中遇到红灯次数为X,则 4.8解 500+1000

14、 参见课本后面230页参考答案 4.10参见课本后面231页参考答案4.11 解:设均值为,方差为,则XN(,)根据题意有:,解得t=2即=12所以成绩在60到84的概率为4.124.13解:4.14解:设球的直径为X,则: 4.15参看课本后面231页答案4.16解:

5.5解:方法1:用表示每个部件的情况,则,,方法2:用X表示100个部件中正常工作的部件数,则第六章样本与统计6.16.3.1证明:由=+b可得,对等式两边求和再除以n有 由于 所以由 可得=6.3.2因为 所以有6.2 证明: 6.3(1)(2)由于所以有两边同时除以(n-1)可得 即 6.4 同例6.3.3可知得 查表

16、可知=1.96 又 根据题意可知n=436.5解(1)记这25个电阻的电阻值分别为,它们来自均值为=200欧姆,标准差为=10欧姆的正态分布的样本则根据题意有:(2)根据题意有6.6 解:(1)记一个月(30天)中每天的停机时间分别为,它们是来自均值为=4小时,标准差为=0.8小时的总体的样本。根据题意有:(注:当时,的值趋近于1,相反当时,其值趋近于0)(2)根据题意有:6.7证明:因为T ,则,随机变量的密度函数为 显然,则为偶函数,则6.8 解:记,则XN(,),n=25故6.9 解:记这100人的年均收入为,它们是来自均值为万元,标准差为万元的总体的样本,n=100则根据题意有:(1)(2) (3)6.10 解:根据题意可知此样本是来自均值为,标准差为的总体,样本容量为n=5 (1)依题意有(2)要求样本的最小值小于10概率,即5个数中至少有一个小于10的概率,首先计算每个样本小于10的概率:设X是5个样本中小于10的样本个数则X服从二项分布B(5,0.1587)故有即样本的最小值小于10的概率是0.5785.(3)同(2)要求样本的最大值大于15的概率,即5个数中至少有一个大于15的概率,首先计算每个样本大于15的概率:设X是5个样本中大于15的样本个数则X服从二项分布B(5,0.0668)故有即样本的最大值大于15的概率是0.2923

Visual C++ 常用数值算法集 作者:何光渝编 出版社:科学出版社 出版日期:2002年7月 ISBN: 序 前言 第1章 线性代数方程组的解法 1.1全主元高斯-约当(Gauss-Jordan)消去法 1.2LU分解法 1.3追赶法 1.4五对角线性方程组解法 1.5线性方程组解的迭代改善 1.6范德蒙(Vandermonde)方程组解法 1.7托伯利兹(Toeplitz)方程组解法 1.8奇异值分解 1.9线性方程组的共轭梯度法 1.1对称方程组的乔列斯基(Cholesky)分解法 1.11矩阵的QR分解 1.12松弛迭代法 第2章 插值 2.1拉格朗日插值 2.2有理函数插值 2.3三次样条插值 2.4有序表的检索法 2.5插值多项式 2.6二元拉格朗日插值 2.7双三次样条插值 第3章 数值积分 3.1梯形求积法 3.2辛普森(Simpson)求积法 3.3龙贝格(Romberg)求积法 3.4反常积分 3.5高斯(Gauss)求积法 3.6三重积分 第4章 特殊函数 4.1Γ函数、贝塔函数、阶乘及二项式系数 4.2不完全Γ函数、误差函数 4.3不完全贝塔函数 4.4零阶、一阶和任意整数阶的第一、二类贝塞尔函数 4.5零阶、一阶和任意整数阶的第一、二类变形贝塞尔函数 4.6分数阶第一类贝塞尔函数和变形贝塞尔函数 4.7指数积分和定指数积分 4.8连带勒让德函数 附录 第5章 函数逼近 5.1级数求和 5.2多项式和有理函数 5.3切比雪夫逼近 5.4积分和导数的切比雪夫逼近 5.5用切比雪夫逼近求函数的多项式逼近 第6章 随机数 6.1均匀分布随机数 6.2变换方法——指数分布和正态分布随机数 6.3舍选法——Γ分布、泊松分布和二项式分布随机数 6.4随机位的产生 6.5蒙特卡罗积分法 第7章 排序 7.1直接插入法和Shell方法 7.2堆排序 7.3索引表和等级表 7.4快速排序 7.5等价类的确定 附录 第8章 特征值问题 8.1对称矩阵的雅可比变换 8.2变实对称矩阵为三对角对称矩阵 8.3三对角矩阵的特征值和特征向量 8.4变一般矩阵为赫申伯格矩阵 8.5实赫申伯格矩阵的QR算法 第9章 数据拟合 9.1直线拟合 9.2线性最小二乘法 9.3非线性最小二乘法 9.4绝对值偏差最小的直线拟合 第1章 方程求根和非线性方程组的解法 1.1图解法 1.2逐步扫描法和二分法 1.3割线法和试位法 1.4布伦特(Brent)方法 1.5牛顿-拉斐森(Newton-Raphson)法 1.6求复系数多项式根的拉盖尔(Laguerre)方法 1.7求实系数多项式根的贝尔斯托(Bairstou)方法 1.8非线性方程组的牛顿-拉斐森方法 第11章 函数的极值和最优化 11.1黄金分割搜索法 11.2不用导数的布伦特(Brent)法 11.3用导数的布伦特(Brent)法 11.4多元函数的下山单纯形法 11.5多元函数的包维尔(Powell)法 11.6多元函数的共轭梯度法 11.7多元函数的变尺度法 11.8线性规划的单纯形法 第12章 傅里叶变换谱方法 12.1复数据快速傅里叶变换算法 12.2实数据快速傅里叶变换算法(一) 12.3实数据快速傅里叶变换算法(二) 12.4快速正弦变换和余弦变换 12.5卷积和逆卷积的快速算法 12.6离散相关和自相关的快速算法 12.7多维快速傅里叶变换算法 第13章 数据的统计描述 13.1分布的矩——均值、平均差、标准差、方差、斜差和峰态 13.2中位数的搜索 13.3均值与方差的显著性检验 13.4分布拟合的X2检验 13.5分布拟合的K-S检验法 第14章 解常微分方程组 14.1定步长四阶龙格-库塔(Runge-Kutta)法 14.2自适应变步长的龙格-库塔法 14.3改进的中点法 14.4外推法 第15章 两点边值问题的解法 15.1打靶法(一) 15.2打靶法(二) 15.3松弛法 第16章 偏微分方程的解法 16.1解边值问题的松弛法 16.2交替方向隐式方法(ADI) 参考文献 编后记

资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!

我要回帖

更多关于 概率论中有放回类题目怎么做 的文章

 

随机推荐