8051单片机内部RAM30H开始存放着16个8位无符号数,按从小到大的顺序,存到内部RAM 40H单元开始的单元中?

在程序中定义 xdata、code这些变量的时候,是如何使用程序中的存储的,如何知道有没有超过····

data为128字节或者256字节,在手册上可以查到,xdata就是sram了,大小看具体的单片机,512字节,1024字节,2048字节都是有可能的。data空间是全局变量和堆栈共存的,如果数组定义得太多,堆栈(动态消长)就会在某一个时候不够用了。如果芯片有xdata内存空间,最好把数据放到xdata空间中,防止堆栈溢出,至于数据放到xdata空间会造成运行缓慢什么的,俺就不会算。keil编译后,下方会显示已用的data大小,xdata大小,code大小。一般来说(iap系列单片机flash就是eeprom),code放在片内flash空间,eeprom是另一个空间,在源代码中无法用xdata,data,code等等前缀说明数据存放在eeprom空间,eeprom空间的使用是你自己分配,Keil也无法感知它的存在,你可以认为它是很小的软盘。 至于stc内部的eeprom,都是用flash做的,所以操作必须遵守flash操作规则。

sram 1280; EEPROM 1k; 在程序中定义 xdata、code这些变量的时候,是如何使用程序中的存储的,如何知道有没有超过···· 球指点······
建立工程的时候,选择正确的型号。编译器会自动安排数据空间,除非你在代码里面指定了存放代码的绝对地址,而改地址超出了该型号芯片的最大物理空间。这样的情况,编译器应该也会报错的。
同意楼上两位的观点。 编译器会报错的。
你们看楼上,那个 xdata 的地址是说可以扩展那么多?还是说内部有带啊···怎么才能知道 单片机的xdata有多大呢?

这个说的详细啊 呵呵,要不keil有时候,真的没有什么警告,我定义一个数组,比如unsigned char temp[64]程序就正常了,要是我定义了unsigned char temp[70],程序烧到板子上面,程序启动都出现问题····所以想弄清楚下,我使用的单片机到底 xdata data code 什么的有多少,以免出现一些难以预料的问题啊···我在pdf手册上真没找到详细的介绍,只找到了那句::flash 60K; sram 1280; EEPROM 1k....

建立工程的时候,选择正确的型号。编译器会自动安排数据空间,除非你在代码里面指定了存放代码的绝对地址,而改地址超出了该型号芯片的最大物理空间。这样的情况,编译器应该也会报错的。

不用操心,编译器帮你解决,如果不够会给出警告或错误 如果想看详细的情况可以看生成的*.mpf文件

第四阶段是依靠实验板,学习掌握单片机的组合语言指令系统和简单编程。同时和前面所学硬体知识结合组装,起到主学软体,巩固硬体的双重作用。开始时可用别人编的简单程式在实验板上进行验证、分析,主要是熟悉该学习方法,在应用方面主要针对单片机I/O各项介面的使用,如A/D,D/A,PWM输出口的应用,LCD与VFD的控制,以及如何规范各项串列输出入口的通讯协定等,对其所控制的各项元器件须先分析驱动能力,如电流电压问题等。

90. 用一个12M的晶振,怎么能实现480MB/S的数据传输率呢?

答:在集成了PLL的12MHz的即可达到480MHz,相位锁定回(环)路(Phase Locked Loop,PLL)又被称为相锁回路或锁相回路,其原理是经由闭回路自动控制系统的反馈作用,驱使另一个动作不精准、频率变动量高的作用元件的动作频率,使其能快速且一直保持稳定地与正确的频率参考源达到同相甚至是同相又同频的状态,如此即是相位锁定(Phase Locked)的状态,我们若以电路外部精准、频率变动量极低的振荡频率源作为基准参考,来驱使电路内部精准、频率变动量极低的振荡频率源,使其达成相位锁定的状态,即可用来作为通讯系统的调变/解调电路。

一般480MB/S的数据传输率是运用在USB 2.0,当通用序列汇流排(Universal Serial Bus)规格于1996年1月发表时,代表业界成功研发出一套连结中低速频宽的周边元件与个人电脑之间的低成本串连管道,但是仍缺乏支援高速宽频的应用能力。于2000年4月,USB再度推出全新一代的USB 2.0版本的技术规格,可将讯号传输速度提升整整40倍,由原先USB 1。0的最高12MHz的速度至现今USB 2。0的高速480MHz,并扩增了更先进的功能,如新型的传输装置以提高频宽使用率与增加传输装置及主机控制器之间的附加功能。

针对实际上可供使用的频宽来说,资料的传输频宽速度由原先的1 Mbytes/sec左右提高至50 Mbytes/sec,这样一个大幅度的频宽增加主要归功于USB 2.0规格运用了微讯框(micro-frame)、可容纳更多资讯的传输封包、更频繁的传输次数、分割式传输处理(split transaction)、以及一些新的执照(token)等崭新技术。USB 2.0装置的架构同时增加了两项全新的描述元(descriptor),即装置认可(Device Qualifier)与其他的速度配置(Speed Configuration),可用来明确标示出资料传输装置在其它运作速度下的功能表现。

针对电子规格的变动:在主机与新型的高速控制器之间的连结则重新定义,以支援现今高达480MHz的传输效能表现。新的高速拓璞新的标准采用90W 的差分阻抗(differential characteristic impedance)搭配差分电流模式讯号(differential current mode signaling),并采用相同的NZRI编码机制(NZRI

91. 在单片机程序设计中遇,从被嵌套的高级中断中如何强行返回到主程序。子程序返回指令在恢复堆栈后可不可以用跳转指令替代返回到主程序中?

答:如果是51系列,那直接用POP指令就可以实现强行返回;如果是用RISC结构的单片机(HOLTEK 单片机是RISC结构的),那一般都是硬件堆栈,没有PUSH和POP指令,所以子程序调用和返回指令必须成对使用。

92. 对单片机的速度,有何要求?Holtek的单片机能符合该项应用吗?

答:目前HOLTEK的单片机速度最高为8MHz,一条指令执行时间为0。5us,以这样的速度,可以满足大多数项目的开发;不知你说的具体是什么项目。目前HOLTEK单片机主要有OTP和Mask两种,将来会推出Flash的单片机;但HOLTEK的开发系统很完善,在开发阶段,HOLTEK还可以适当提供免费样片,相对来说,开发成本并不会比用Flash来得高。

93. 是一种功能灵活和强大的软硬件嵌入式开发系统,能否用PSoC代替部分单片机系统呢?

答:在一般在嵌入式系统的应用中,都可能需要使用几十种甚至是更多的类比或数位周边元器件。熟悉MCU开发的工程师们都知道,在MCU的开发过程中,最需要花时间和精力的就是元器件的选购,以及元器件相容性方面的考虑。目前在市场上有成千上万不同种周边元器件,设计人员要想从中寻找到适合自己应用的元器件是一件令人头痛的事情。因此,设计工程师的理想方案似乎是采用定制的SoC晶片,但是如果采用定制微控制器、ASIC和PLD器件,一方面价格比较昂贵,另一方面需要设计人员具有专门的设计技能。因此,研制一个高效率、周边元器件可嵌入配置的、低功耗的8位微控制器是很有必要的。

MicroSystems公司在最近推出的新一代功能强大的8位元可配置的嵌入式单片机。该系列单片机与传统单片机的根本区别在于其内部集成的数位和类比block模组,工程师可以根据不同设计要求调用不同的数位和类比block模组,完成晶片内部的功能设计;实现使用一块晶片就可以配置成具有多种不同周边元器件的微控制器,建立一种可配置嵌入式微控制器;用以实现从确定系统功能开始,到软/硬体划分,并完成设计的整个过程。因此,PSoC能够适应非常复杂的即时控制需求,使用它进行产品开发可以大大提高开发效率,降低系统开发的复杂性和费用,同时增强系统的要可靠性和抗干扰能力;因此,它特别适用于各种控制和自动化领域。所以PSoC的动态配置能力给开发者提供了快速方便的编程和开发方法,同时也为单片机的应用开拓了更大的空间。因此利用片内集成的闪速记忆体可以降低产品开发成本,缩短产品开发周期。因此,此MCU结构具有广阔的应用推广前景。

94. 单片机对modem要进行哪些初始化操作?

答:一般单片机的MODEM通讯必须要有两个背景知识,一个是AT命令集,另一个是通用非同步接收发送器(UART)。

下面介绍我通讯程式例子中涉及到的AT命令。

Dn:拨号命令。该命令使MODEM立即进入摘机状态,并拨出跟在后面的号码。D命令是基本的拨号命令,它受到其他命令的修饰可构成MODEM何时拨号以及如何拨号等操作。

,:标准暂停。我们常常碰到拨打外线电话时需要暂停一下,等听到二次拨号音(外线)之后才能再拨后续的号码。缺省时暂停时间为2s(秒),它由S8寄存器指定。

Sn:表示MODEM内部的寄存器。

S0:自动回应。如果要求MODEM具有自动回应特性,则应该预先将MODEM的S0寄存器设置为非0。

S8:逗号拨号修饰符的暂停时间。该寄存器决定了当MODEM在拨号中遇到逗号(,)时应该暂停的时间。

l 通用非同步接收发送器UART

深入理解UART内部结构以及内部寄存器各位的含义,详细了解资料发送和接收的过程,有助于编写出高效、稳定的程式。一般介绍编写基本通讯程式需要知道的寄存器。实际的ADDRESS由具体接线决定。

l 串列传输速率除数锁存器(LSB、MSB)

在通讯之前要进行一些参数初始化,串列传输速率是首先应该考虑的一项。该寄存器是一个16位的寄存器,分为低8位(LSB)和高8位(MSB)寄存器。

另外单片机访问的是串列传输速率除数锁存器LSB/MSB。一般常用的工作频率是1。8432MHz。这个频率除以16就是串列传输速率的时钟频率,用于控制发送和接收资料的速度。

下面给出串列传输速率除数锁存器值的计算公式:

串列传输速率除数锁存器值=工作频率/(16×期望串列传输速率)=1843200/(16×期望串列传输速率)

读操作单片机访问接收缓冲寄存器(RHR),写操作单片机访问发送保持寄存器(THR)。

资料发送和接收模式的选择。常用的两种模式:FIFO和DMA。其中DMA又有两种模式DMA的模式0、DMA的模式1可供选择。

我使用的单片机是AT89C51,试过用弹出指令强行返回中断的方法,确实能够返回主程序,具体做法是:首先将堆栈中的地址弹出,然后压入主程序中新的地址,最后执行RETI指令就可以返回到该地址了。如果弹出指令执行完后直接用跳转指令而不通过RETI指令也能返回到主程序,但下次中断来时将不能再次响应。请问是从被嵌套的高优先级中断程序中怎样返回主程序,是不是还必须得通过最低级中断才能返回。要是直接返回的话,是否下次中断还能够正常响应?

答:对于51系列的单片机而言,当中端响应发生时,会将相应的优先级有效职位;当退出中断时,执行RETI,单片机又自动将优先级有效触发器清0。因此,如果直接使用跳转指令从中断子程序出来的话,单片机没有清0优先级有效触发器,下一次中断发生时就不能响应了。

如果要从高优先级中断程序返回主程序的话,必须执行两条RETI指令,才可以清除高/低优先级有效触发器。具体的程序可以是:

POP ACC ;将高优先级子程序返回地址出栈

POP ACC ;将低优先级子程序返回地址出栈

PUSH DPL ;将LABLE2,即需要返回的主程序地址入栈

我要回帖

更多关于 8031单片机内部程序存储器的容量 的文章

 

随机推荐