铅蓄电池的电池反应式反应

随着信息、能源、电子技术的快速发展,阀控式铅酸蓄电池(VRLAB)目前已被广泛应用于电信运营、电力系统、通信专网、金融系统、交通系统、公安系统、石油煤炭、大型工矿企业等领域。

与普通的铅酸蓄电池相比,VRLAB由于采用了内部氧复合技术,大大缓解了电解液的损耗,从而使其能够在免维护状态下长期工作,并具有体积小、防爆安全、电压稳定、无污染、重量轻、放电性能高、维护量小等优点。但是,目前广泛应用的VRLAB声称为免维护蓄电池,其实这种说法是不够科学和准确的。确切地讲,VRLAB应称为“少维护蓄电池”,仅是指平时无须加酸液和水,无须调节电解液的密度。由于蓄电池平时都是并联在整流设备上并处于浮充状态中,时间一长,蓄电池就会出现活化物资脱落、电解液干涸、极板变形、极板腐蚀及硫化等异常情况,从而导致蓄电池容量降低甚至失效,一旦市电中断,极有可能酿成电力供电中断等重大事故。

VRLAB在国内的大量安装使用是从上世纪80年代末开始的,初期安装的电池主要为进口产品,进入上世纪90年代末,国产电池在许多领域开始大量使用。大部分厂家声称其VRLAB的设计寿命在10年以上,但是,在实际使用中许多电池寿命只有5~6年时间,条件恶劣者2~3年后便会出现容量明显下降现象。为此,有必要对严重影响电池使用寿命的原因进行研究。

1蓄电池的衰退现象及原因

随着通信事业的快速发展,VRLAB越来越多地被应用于偏远的农村和山区,由于面广量大、维护人员专业知识的缺乏,加之供电不正常,经常停电,导致电池在使用过程中会出现不同的缺陷,特别是深度放电的电池往往出现电池早期失效。电池失效的主要形式有:正极板腐蚀变形、正极活性物质软化脱落、极板表面硫酸盐化或产生铅绒、内部结晶短路等。

VRLAB为了实现较高的再复合效率,一般多为贫电液设计,即由酸量来控制电池的容量,这种设计从理论上或在试验室里效果都不错,但到了用户手中却往往出现过早失效,尤其是在经常停电的情况下,电池过放电时,导致电液密度降到1.06/cm3以下,甚至更低,从而引起电解液中游离铅的浓度急剧增加,这是造成电池失效的根本原因。

2影响蓄电池使用寿命的因素

蓄电池是一种化学电源,它的构造大同小异,都是由正极、负极、电解质、隔离物和容器组成的,其中正负两极的活性物质和电解质起化学反应,对电池产生电流起着主导作用。

影响VRLAB实际使用寿命的因素很多,起主要作用的有以下几方面。

2.1浮充电压的设置对电池寿命的影响

浮充电压的设置对电池的寿命具有相当重要的影响,不合理的浮充电压主要影响电池的正极板栅腐蚀速率和电池内气体的排放。

2.2均衡充电方法对电池寿命的影响

均衡充电是为了防止某些电池因容量、端压的不一致而进行的补充电。在均衡充电时气体的产生量比浮充电时多几十倍,所以充电时间不能太长,均充电压也不能太高,以避免盈余气体影响氧的再化合效率,失水量增加,而且使板栅腐蚀速度增加,从而损坏电池。

蓄电池被过度放电是影响蓄电池使用寿命的重要因素。这种情况主要发生在交流停电后,蓄电池组为负载供电期间。当蓄电池被过度放电时,会导致电池内部有大量的硫酸铅被吸附到阴极表面,形成电池阴极的“硫酸盐化”。硫酸铅本身是一种绝缘体。阴极形成的硫酸铅越多,电池的内阻越大,电池的充放电性能就越差,电池容量下降得越快,其使用寿命就越短。

2.4运行条件对阀控铅酸蓄电池寿命的影响

电池的运行条件也对电池的寿命产生重要的影响。如果在高温下长期使用,温度每增高10℃,电池寿命约降低一半。

浮充运行是蓄电池的最佳运行条件,运行时电池一直处于满荷电状态,在此条件下运行电池将达到最长的使用寿命。

蓄电池频繁长时间放电并且经常在没有充满电的情况下,又进行深度放电,使蓄电池长时间处于亏电状态,内部极板硫化,导致容量迅速下降,电池落后。

3对落后电池的活化修复

3.1蓄电池内部反应原理

VRLAB电解液中的PbSO4始终处于饱和状态,PbSO4是难溶物质,在电解液中硫酸铅的溶解与沉淀处于平衡状态,一般电池放电开始的硫酸密度为1.30g/cm3,质量百分浓度为39.1%,随着放电深度的增加,质量百分浓度下降到8.7%以下,密度为1.06g/cm3以下,有时甚至更低,接近中性。

从反应式中可以看出,硫酸不仅传导电流,而且参与电化学反应,放电时硫酸不断减少,生成PbSO4↓和水。

蓄电池放电后,如果没有及时地充电或没有充满电,放电产生的硫酸铅就会结晶转化成不可逆的硫酸铅晶体,导致极板硫化,电池落后。

蓄电池的充放电过程是将脉冲充电分成一个或几个阶段,严格按照蓄电池充电特性曲线进行自动充电,设计的充电模式是“恒流→(均充稳压值)定压减流→(自动判别转为)恒流放电”三波段式使电解液降温等。这种方法比较理想,可以消除硫化。

对蓄电池进行脉冲充电和恒流放电反复循环,将其内部的硫酸铅晶体激活,提高硫酸密度和质量百分浓度,随着活化修复的加深,使电池硫酸密度达到1.30g/cm3,质量百分浓度达到39.1%,电解液中硫酸铅的溶解与沉淀处于平衡状态,PbSO4=Pb2++SO42-。在溶液中遵守溶度各规则,即(Pb2+)·(SO42-)=K(常数),K=2.20×10e-8,蓄电池完全被修复,蓄电池使用寿命被延长一到两个周期。

3.3对严重落后电池处理

对严重极板硫化、电解液干涸或极间短路、开路的电池(内阻严重偏大、电压很高或为零)应立即更换。对2V电池组可短接该电池应急处理。

并不是所有的落后电池都可以修复的,导致蓄电池落后的因素很多,大体分7种,即极板膨胀、极板腐蚀、极板钝化、有效物质脱落、电解液干涸、极板短路、极板硫化。前4种是不可修复的,后3种是可修复的。其中极板硫化导致蓄电池落后因素占的比例最大,高达90%。所以,对于容量为额定容量的40%~80%落后电池修复的成功率比较高,经试验表明,可修复率高达95%以上;而对于容量为额定容量的40%以下落后电池修复的成功率相对较低。

4对蓄电池活化修复的充电设置

蓄电池活化需要反复地充放电,对于一些落后电池进行充电时,有时充不进去,于是,维护人员通过提高充电电压的方法进行充电,认为充电电压越高越好,越高越能修复电池。这是一种错误的理解。这是由于水分解反应为

如果把电压设置过太高,就会对蓄电池过充,其结果可能为以下2种情况。

1)内部氧复合反应不能及时地将氧气复合掉,就会造成大量的氧气,氢气从排气阀放出(甚至可能造成蓄电池爆炸),使容量下降。

2)正极的反应为PbSO4+2H2O=PbO2+3H+HSO4+2e。在蓄电池的阳极,铅合金和活性的二氧化铅直接接触,而且同时浸在硫酸溶液中,各自与硫酸溶液都建立不同的平衡的电极电位。在对蓄电池充电的状态下,正极由于析氧反应,水被消耗,H+增加,从而导致正极附近的酸度增大,加速腐蚀极板,甚至造成极板严重腐蚀,而使电池报废,本来可修复的电池变成了无法修复的电池。

为此,建议均充时电压一般不超过2.35V。

如何延长蓄电池供电时间和使用寿命,提高资源的利用率,是我们共同关注的焦点,虽然并不是所有的落后电池都可以修复,但铅酸蓄电池的修复技术带来的效益是毋庸置疑的。

        在数据中心和通信行业,会用到很多蓄电池,这些蓄电池可作为交流不间断电源系统、直流电源系统备用电源,又可作为油机等起动动力电源,还可作为高压配电系统中的直流操作及控制电源。当外部交流供电突然中断时,蓄电池作为系统供电的后备保护,将担负起对负载继续供电的任务,从而保证了数据中心设备的正常工作。

        “双极硫酸盐化理论”最能说明铅酸蓄电池工作原理,铅酸蓄电池在放电时,正负极的活性物质均变成硫酸铅(PbSO4),充电后又恢复到原来的状态,即正极转变成二氧化铅(PbO2),负极转变成海绵状铅(Pb)。如下图2所示。

        电流从正极经外电路流向负极,再由负极经内电路流向正极,电池向外电路输送电流的过程,叫做电池的放电,图3。

        在放电过程中,两极活性物质逐渐被消耗,正极二氧化铅(PbO2)和负极铅(Pb)放电过程中两极都生成了硫酸铅,随着放电的不断进行,硫酸逐渐被消耗,同时生成水,使电解液的浓度逐渐降低,图4(PbSO4)。

        放电以后,外来直流电源以适当的反向电流注入,这种反向电流使活性物质还原的过程叫做充电。铅酸蓄电池的充电反应是放电反应的逆反应,正负极板上的硫酸铅分别变成二氧化铅和海绵状铅,电解液中的水分子不断消耗,硫酸分子不断生成,电解液密度不断升高,图5所示。

         把正极板、隔板、负极紧密压合在一起后,装入电池壳体,连接极柱,安装盖板和安全阀后,注入稀硫酸,这样就形成了一个电池,如图6所示。

四、电池寿命和失效原因

       在电池的使用中,当电池的实际放电容量低于额定容量80%时,认为电池失效或者寿命终止。典型的失效模式为:电池失水、硫酸盐化、板栅腐蚀、正极板腐蚀泥化脱落等情况会导致电池容量下降或者提前失效。

        电池充电后期存在副反应,电解水反应导致气体析出;板栅腐蚀消耗水分;自放电消耗水分;当水分损失一定程度后,内阻增大,电池容量下降,图7所示。 

图7 电解液浓缩导致容量下降

    导致电池失水原因:充电电压过高;充电电流大;电池内部温度高;运行环境温度高;电池密封不良(安全阀、端子、槽盖);壳体裂纹等;

        电池组出现漏液,比如安全阀、极柱、槽盖等部位出现液体溢出或堆积白色结晶体,如图8所示。漏液经外壳流向电池架、下层电池,造成电池架腐蚀、甚至有可能造成下层电池短路,发生起火、爆炸情况。       

         产生的主要原因有:热封、胶封工艺不良;安装、搬运过程磕碰,导致电池密封性能破坏。中国电信在建设规范和维护规程中明确要求:新装电池必须铺设电池缓冲绝缘垫,电池室内宜安装早期烟雾报警。

       当蓄电池经常处于充电不足或者过放电后, 负极板的表面附着一层白色坚硬的硫酸铅结晶体,充电后依旧无法转化为活性物质,导致电池容量下降,这种现象称为“不可逆硫酸盐化”,简称“硫化”,如图9所示。

        硫化的原因:蓄电池长期充电不足或放电后没有及时充电,部分PbSO4溶解后析出并在极板结晶形成硫化;电解液液面过低,使极板上部与空气接触而被氧化后硫化;长期过量放电或小电流深度放电,使极板深处活性物质的孔隙内生成PbSO4。

        极板栅腐蚀的因素:参数设置不合理,充电电压过高,电池过充电,板栅腐蚀速率越快。电池使用环境温度过高,腐蚀速度加快。电解液密度越高,板栅腐蚀速率越快。 板栅合金材质不纯,或铸造工艺不合理,板栅内部存在气孔。板栅厚度设计太薄,设计板栅厚度应高于3.0 mm。

        电池工作环境温度过高或充电电压过高,没有配置温度补偿功能,蓄电池内部温度升高,电池内阻下降,充电电流又升高,电池内阻进一步降低 ,形成恶性循环,图10为某蓄电池机房空调长时间故障导致电池热失控起火案例。

图10 空调故障导致电池热失控

    引起电池热失控的原因:环境温度过高;电池参数设置不合理,导致电池过充电。安全阀失效,电池内部压力过大。电池安装时,中间需要预冷散热通道,最小不得少于10mm。

        泥化原因:电池充放电过程中,正极活性物质在PbO2和PbSO4之间转化。正极反应物的体积变化,PbSO4体积是PbO2体积的2.68倍。正极活性物质是非常坚硬的网络结构,正极活性物质的体积在不断反复收缩和膨胀,就使二氧化铅粒子之间的相互结合逐渐减弱,造成正极活性物质泥化。 

        影响因素:频繁放电,加速正极活性物质的体积膨胀和收缩,从而导致电池极板的快速软化。参数设置不合理,电池过充电或过度放电,正极活性物质体积变化过大,加快活性物质软化速率,提前失效。

五、阀控蓄电池注意事项和使用寿命

        蓄电池在使用和维护时应注意“三防一及时”:防高温、防过放电、防过充电、及时充电。中国电信规定:在正常使用及维护条件下,设备有效使用年限按下表1要求:

表1 阀控电池使用寿命

        同时要求:对于已超过有效使用年限的蓄电池应退出A、B类机房。对于已超过有效使用年限的设备,经过检测评估,性能仍然良好者并满足运行质量要求,具有使用价值的,经过主管部门的批准,可继续使用,但应增加维护检查频次以及时发现设备劣化变化。性能指标达不到要求的设备,应报废和退网。

我要回帖

更多关于 铅蓄电池的电池反应式 的文章

 

随机推荐