线性映射单射的核与象是怎么定义的?

  在我们平凡无奇的学生时代,是不是经常追着老师要知识点?知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。那么,都有哪些知识点呢?以下是小编为大家收集的数学必修一知识点,欢迎阅读与收藏。

  数学必修一知识点1

  当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,

  当h<0时,则向左平行移动|h|个单位得到.

  当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;

  当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;

  当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;

  因此,研究抛物线y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.

  4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:

  (1)图象与y轴一定相交,交点坐标为(0,c);

  当△=0.图象与x轴只有一个交点;

  当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.

  顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.

  6.用待定系数法求二次函数的解析式

  (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:

  (2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).

  (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a≠0).

  7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.

  数学必修一知识点2

  (一)指数与指数幂的运算

  1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈

  当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数。此时,的次方根用符号表示。式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand)。

  当是偶数时,正数的次方根有两个,这两个数互为相反数。此时,正数的正的次方根用符号表示,负的次方根用符号―表示。正的次方根与负的次方根可以合并成±(>0)。由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

  注意:当是奇数时,当是偶数时,

  正数的分数指数幂的意义,规定:

  0的正分数指数幂等于0,0的负分数指数幂没有意义

  指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂。

  3、实数指数幂的运算性质

  (二)指数函数及其性质

  1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R。

  注意:指数函数的底数的取值范围,底数不能是负数、零和1。

  2、指数函数的图象和性质

  数学必修一知识点3

  2. 集合的中元素的三个特性:

  (1) 元素的确定性,

  (2) 元素的互异性,

  (3) 元素的无序性,

  3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

  (2) 集合的表示方法:列举法与描述法。

  ? 注意:常用数集及其记法:

  非负整数集(即自然数集) 记作:N

  正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R

  2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}

  3) 语言描述法:例:{不是直角三角形的三角形}

  (1) 有限集 含有有限个元素的集合

  (2) 无限集 含有无限个元素的集合

  (3) 空集 不含任何元素的集合 例:{x|x2=-5}

  二、集合间的基本关系

  1.“包含”关系―子集

  注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

  反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A

  即:① 任何一个集合是它本身的子集。A?A

  ②真子集:如果A?B,且A? B那就说集合A是集合B的真子集,记作A B(或B A)

  3. 不含任何元素的集合叫做空集,记为Φ

  规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

  ? 有n个元素的集合,含有2n个子集,2n-1个真子集

  运算类型 交 集 并 集 补 集

  定 义 由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x A,且x B}.

  由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x A,或x B}).

  设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

  二、函数的有关概念

  1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.

  1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。

  求函数的定义域时列不等式组的主要依据是:

  (1)分式的分母不等于零;

  (2)偶次方根的被开方数不小于零;

  (3)对数式的真数必须大于零;

  (4)指数、对数式的底必须大于零且不等于1.

  (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.

  (6)指数为零底不可以等于零,

  (7)实际问题中的函数的定义域还要保证实际问题有意义.

  相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)

  2.值域 : 先考虑其定义域

  3. 函数图象知识归纳

  (1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .

  常用变换方法有三种

  (1)区间的分类:开区间、闭区间、半开半闭区间

  (3)区间的数轴表示.

  一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。记作f:A→B

  (1)在定义域的不同部分上有不同的解析表达式的函数。

  (2)各部分的自变量的取值情况.

  (3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.

  1.函数的单调性(局部性质)

  设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1

  如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.

  注意:函数的单调性是函数的局部性质;

  (2) 图象的特点

  如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.

  (3).函数单调区间与单调性的判定方法

  ○3 变形(通常是因式分解和配方);

  ○5 下结论(指出函数f(x)在给定的区间D上的单调性).

  (B)图象法(从图象上看升降)

  (C)复合函数的单调性

  复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”

  注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集.

  8.函数的奇偶性(整体性质)

  一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.

  一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=―f(x),那么f(x)就叫做奇函数.

  (3)具有奇偶性的函数的图象的特征

  偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

  利用定义判断函数奇偶性的步骤:

  ○1首先确定函数的定义域,并判断其是否关于原点对称;

  (3)利用定理,或借助函数的图象判定 .

  9、函数的解析表达式

  (1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.

  (2)求函数的解析式的主要方法有:

  10.函数最大(小)值(定义见课本p36页)

  ○1 利用二次函数的性质(配方法)求函数的最大(小)值

  ○2 利用图象求函数的最大(小)值

  ○3 利用函数单调性的判断函数的最大(小)值:

  如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);

  如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);

  数学必修一知识点4

  1.集合的有关概念。

  1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素

  注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。

  ②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。

  ③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件

  2)集合的表示方法:常用的有列举法、描述法和图文法

  3)集合的分类:有限集,无限集,空集。

  4)常用数集:N,Z,Q,R,N_

  .子集、交集、并集、补集、空集、全集等概念。

  1)子集:若对x∈A都有x∈B,则AB(或AB);

  2)真子集:AB且存在x0∈B但x0A;记为AB(或,且)

  注意:①?A,若A≠?,则?A;

  ③若且,则A=B(等集)

  3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1)与、?的区别;(2)与的区别;(3)与的区别。

  4.有关子集的几个等价关系

  5.交、并集运算的性质

  6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。

  分析一:从判断元素的共性与区别入手。

  对于集合P:{x|x=,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的数,而6m+1表示被6除余1的数,所以MN=P,故选B。

  分析二:简单列举集合中的元素。

  解答二:M={…,,…},N={…,,,,…},P={…,,,…},这时不要急于判断三个集合间的关系,应分析各集合中不同的元素。

  =∈N,∈N,∴MN,又=M,∴MN,

  =P,∴NP又∈N,∴PN,故P=N,所以选B。

  点评:由于思路二只是停留在最初的归纳假设,没有从理论上解决问题,因此提倡思路一,但思路二易人手。

  变式:设集合,,则(B)

  当时,2k+1是奇数,k+2是整数,选B

  分析:确定集合A_子集的个数,首先要确定元素的个数,然后再利用公式:集合A={a1,a2,…,an}有子集2n个来求解。

  解答:∵A_={x|x∈A且xB},∴A_={1,7},有两个元素,故A_的子集共有22个。选D。

  变式1:已知非空集合M{1,2,3,4,5},且若a∈M,则6?a∈M,那么集合M的个数为

  解:由已知,集合中必须含有元素a,b.

  评析本题集合A的个数实为集合{c,d,e}的真子集的个数,所以共有个.

  分析:先化简集合A,然后由A∪B和A∩B分别确定数轴上哪些元素属于B,哪些元素不属于B。

  综合以上各式有B={x|-1≤x≤5}

  点评:在解有关不等式解集一类集合问题,应注意用数形结合的方法,作出数轴来解之。

  ①当时,ax-1=0无解,∴a=0②

  综①②得:所求集合为{-1,0,}

  【例5】已知集合,函数y=log2(ax2-2x+2)的定义域为Q,若P∩Q≠Φ,求实数a的取值范围。

  分析:先将原问题转化为不等式ax2-2x+2>0在有解,再利用参数分离求解。

  解答:(1)若,在内有有解

  所以a>-4,所以a的取值范围是

  变式:若关于x的方程有实根,求实数a的取值范围。

  点评:解决含参数问题的题目,一般要进行分类讨论,但并不是所有的问题都要讨论,怎样可以避免讨论是我们思考此类问题的关键。

  一、选择题(每题4分,共40分)

  1、下列四组对象,能构成集合的是

  A某班所有高个子的学生B的艺术家

  C一切很大的书D倒数等于它自身的实数

  2、集合{a,b,c}的真子集共有个

  3、若{1,2}A{1,2,3,4,5}则满足条件的集合A的个数是

  5、方程组的解集是

  6、以下六个关系式:,,,,,是空集中,错误的个数是

  A.第一象限内的点集B.第三象限内的点集

  C.第一、第三象限内的点集D.不在第二、第四象限内的点集

  8、设集合A=,B=,若AB,则的取值范围是

  9、满足条件M=的集合M的个数是

  10、集合,,,且,则有

  CD不属于P、Q、R中的任意一个

  二、填空题(每题3分,共18分)

  11、若,,用列举法表示B

  13、设全集U=,A=,CA=,则=,=。

  15、已知集合A={x|},若A∩R=,则实数m的取值范围是

  16、50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有人.

  三、解答题(每题10分,共40分)

  18、已知二次函数=,A=,试求的解析式

  19、已知集合,B=,若,且求实数a,b的值。

  20、设,集合,,且A=B,求实数x,y的值。

  数学必修一第一章学习方法

  掌握数学学习实践阶段:在高中数学学习过程中,我们需要使用正确的学习方法,以及科学合理的学习规则。先生著名的日本教育在米山国藏在他的数学精神、思想和方法,曾经说过,尤其是高阶段的数学学习数学,必须遵循“分层原则”和“循序渐进”的原则。与教学内容的第一周甚至是从基础开始,一周后的头几天,在教学难以提升。以及提升的困难进步一步一步,最好不要去追求所谓的“困难”除了(感兴趣),不利于解决问题方法掌握连续性。同时,根据时间和课程安排的长度适当的审查,只有这样才能记住和使用在长期学习数学知识,不要忘记前面的学习。

  数学必修一第一章学习技巧

  重视改错错不重犯。

  一定要重视改错的这份工作,做到错不再犯。初中数学教学中采用的方法是告诉学生所有可能的错误,只要有一个人犯了错误,就应该提出,以便所有的学生都能从中吸取教训。这叫“一人有病,全体吃药。”

  高中数学课没有那么多时间,除了一小部分那几种典型错,其它错误,不能一一顾及。只能谁有病,谁吃药 。如果学生“生病”而忘了吃药,那么没有人会一次又一次地提醒他要注意什么。如果能及时改错,那么错误就可能转变为财富,成为预防针。但是,如果不能及时改错,这个错误就将形成一处“地雷”,迟早要惹祸。

  有的学生认为,自己考试成绩上不去,是因为太粗心。其实,原因并非如此。打一个比方。比如说,学习开汽车。右脚下面,往左踩,是踩刹车。往右踩,是踩油门。其机械原理,设计原因,操作规程都可以讲的清清楚楚。如果初学驾驶的人真正掌握了这一套,请问,可以同意他开车上路吗?恐怕他知道他还缺乏练习。一两次你能正确地完成任务,但这并不意味着你永远不会犯错误。练习的数量不够,才是学生出错的真正原因。大家一定要看到,如果自己的基础知识漏洞百出、隐患无穷,那么,今后的数学将是难以学好的。

  数学必修一知识点5

  “集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合”。数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。

  所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。

  通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,记作a∈A,相反,d不属于集合A,记作d?A。

  有一些特殊的集合需要记忆:

  非负整数集(即自然数集)N正整数集N_或N+

  整数集Z有理数集Q实数集R

  集合的表示方法:列举法与描述法。

  ①列举法:{a,b,c……}

  ③语言描述法:例:{不是直角三角形的三角形}

  强调:描述法表示集合应注意集合的代表元素

  3、集合的三个特性

  指集合中的元素排列没有顺序,如集合A={1,2},集合B={2,1},则集合A=B。

  注意:该题有两组解。

  指集合中的元素不能重复,A={2,2}只能表示为{2}

  集合的确定性是指组成集合的元素的性质必须明确,不允许有模棱两可、含混不清的情况。

  数学必修一知识点6

  1. 函数的奇偶性

  (2)若f(x)是奇函数,0在其定义域内,则 f(0)=0(可用于求参数);

  (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

  (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;

  2. 复合函数的有关问题

  (1)复合函数定义域求法:若已知 的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即 f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

  (2)复合函数的单调性由“同增异减”判定;

  3.函数图像(或方程曲线的对称性)

  (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

  (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;

  (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2

先计算梯度方向直方图,在用SVM训练检测模型,然后是模型检测图像。

是在HOG模型的基础上修改得到的,HOG训练出来的是一个模型,模型内的子模型是没有偏移的,而DPM将模型的子模型是可移动的,并且移动的位移有限。比如使用对得到的人体的HOG,这个模型包含头部、四肢和身体等四个子模型,不同图片上人的姿势体现了子模型的可移动性。(也称之为弹簧形变模型)。

是一种解决人体目标检测的图像描述子,该方法使用HOG特征表达人体,提取人体的外形信息和运动信息,形成丰富的特征集。

下文是转自文章 (谢谢作者)

下面我再结合自己的程序,表述一遍吧:

2.求图像竖直边缘,水平边缘,边缘强度,边缘斜率。

3.将图像每16*16(取其他也可以)个像素分到一个cell中。对于256*256的lena来说,就分成了16*16个cell了。

4.对于每个cell求其梯度方向直方图。通常取9(取其他也可以)个方向(特征),也就是每360/9=40度分到一个方向,方向大小按像素边缘强度加权。最后归一化直方图。

当然一般HOG特征都不是对整幅图像取的,而是对图像中的一个滑动窗口取的。

求得的225*36个特征:

Cell=cell(1,1); %所有的角度直方图,cell是可以动态增加的,所以先设了一个
%到此结束,feature即为所求
%下面是为了显示而写的

上文是转自文章,谢谢作者分享

首先给出一个非常非常简单的分类问题(线性可分),我们要用一条直线,将下图中黑色的点和白色的点分开,很显然,图上的这条直线就是我们要求的直线之一(可以有无数条这样的直线)

当x的维度=3的时候,f(x) 表示3维空间中的一个平面,当x的维度=n > 3的时候,表示n维空间中的n-1维超平面。这些都是比较基础的内容,如果不太清楚,可能需要复习一下微积分、线性代数的内容。

刚刚说了,我们令黑色白色两类的点分别为+1, -1,所以当有一个新的点x需要预测属于哪个分类的时候,我们用sgn(f(x)),就可以预测了,sgn表示符号函数,当f(x) > 0的时候,sgn(f(x)) = +1, 当f(x) < 0的时候sgn(f(x)) = –1。

但是,我们怎样才能取得一个最优的划分直线f(x)呢?下图的直线表示几条可能的f(x)

一个很直观的感受是,让这条直线到给定样本中最近的点最远,这句话读起来比较拗口,下面给出几个图,来说明一下:

这两种分法哪种更好呢?从直观上来说,就是分割的间隙越大越好,把两个类别的点分得越开越好。就像我们平时判断一个人是男还是女,就是很难出现分错的情况,这就是男、女两个类别之间的间隙非常的大导致的,让我们可以更准确的进行分类。在SVM中,称为Maximum Marginal,是SVM的一个理论基础之一。选择使得间隙最大的函数作为分割平面是由很多道理的,比如说从概率的角度上来说,就是使得置信度最小的点置信度最大(听起来很拗口),从实践的角度来说,这样的效果非常好,等等。这里就不展开讲,作为一个结论就ok了,:)

上图被红色和蓝色的线圈出来的点就是所谓的支持向量(support vector)。

这里直接给出M的式子:(从高中的解析几何就可以很容易的得到了,也可以参考后面Moore的ppt)

另外支持向量位于wx + b = 1与wx + b = -1的直线上,我们在前面乘上一个该点所属的类别y(还记得吗?y不是+1就是-1),就可以得到支持向量的表达式为:y(wx + b) = 1,这样就可以更简单的将支持向量表示出来了。

当支持向量确定下来的时候,分割函数就确定下来了,两个问题是等价的。得到支持向量,还有一个作用是,让支持向量后方那些点就不用参与计算了。这点在后面将会更详细的讲讲。

在这个小节的最后,给出我们要优化求解的表达式:

||w||的意思是w的二范数,跟上面的M表达式的分母是一个意思,之前得到,M = 2 / ||w||,最大化这个式子等价于最小化||w||, 另外由于||w||是一个单调函数,我们可以对其加入平方,和前面的系数,熟悉的同学应该很容易就看出来了,这个式子是为了方便求导。

这个式子有还有一些限制条件,完整的写下来,应该是这样的:(原问题

s.t的意思是subject to,也就是在后面这个限制条件下的意思,这个词在svm的论文里面非常容易见到。这个其实是一个带约束的二次规划(quadratic programming, QP)问题,是一个凸问题,凸问题就是指的不会有局部最优解,可以想象一个漏斗,不管我们开始的时候将一个小球放在漏斗的什么位置,这个小球最终一定可以掉出漏斗,也就是得到全局最优解。s.t.后面的限制条件可以看做是一个凸多面体,我们要做的就是在这个凸多面体中找到最优解。这些问题这里不展开,因为展开的话,一本书也写不完。如果有疑问请看看wikipedia。

二、转化为对偶问题,并优化求解:

这个优化问题可以用去解,使用了的理论,这里直接作出这个式子的拉格朗日目标函数:

求解这个式子的过程需要的相关知识(另外pluskid也有专门讲这个问题),并且有一定的公式推导,如果不感兴趣,可以直接跳到后面蓝色公式表示的结论,该部分推导主要参考自。

首先让L关于w,b最小化,分别令L关于w,b的偏导数为0,得到关于原问题的一个表达式

将两式带回L(w,b,a)得到对偶问题的表达式

新问题加上其限制条件是(对偶问题):

这个就是我们需要最终优化的式子。至此,得到了线性可分问题的优化式子

求解这个式子,有很多的方法,比如等等,个人认为,求解这样的一个带约束的凸优化问题与得到这个凸优化问题是比较独立的两件事情,所以在这篇文章中准备完全不涉及如何求解这个话题,如果之后有时间可以补上一篇文章来谈谈:)。

三、线性不可分的情况(软间隔):

接下来谈谈线性不可分的情况,因为线性可分这种假设实在是太有局限性了:

下图就是一个典型的线性不可分的分类图,我们没有办法用一条直线去将其分成两个区域,每个区域只包含一种颜色的点。

     要想在这种情况下的分类器,有两种方式,一种是用曲线去将其完全分开,曲线就是一种非线性的情况,跟之后将谈到的核函数有一定的关系:

     另外一种还是用直线,不过不用去保证可分性,就是包容那些分错的情况,不过我们得加入惩罚函数,使得点分错的情况越合理越好。其实在很多时候,不是在训练的时候分类函数越完美越好,因为训练函数中有些数据本来就是噪声,可能就是在人工加上分类标签的时候加错了,如果我们在训练(学习)的时候把这些错误的点学习到了,那么模型在下次碰到这些错误情况的时候就难免出错了(假如老师给你讲课的时候,某个知识点讲错了,你还信以为真了,那么在考试的时候就难免出错)。这种学习的时候学到了“噪声”的过程就是一个过拟合(over-fitting),这在机器学习中是一个大忌,我们宁愿少学一些内容,也坚决杜绝多学一些错误的知识。还是回到主题,用直线怎么去分割线性不可分的点:

我们可以为分错的点加上一点惩罚,对一个分错的点的惩罚函数就是这个点到其正确位置的距离:

在上图中,蓝色、红色的直线分别为支持向量所在的边界,绿色的线为决策函数,那些紫色的线表示分错的点到其相应的决策面的距离,这样我们可以在原函数上面加上一个惩罚函数,并且带上其限制条件为:

公式中蓝色的部分为在线性可分问题的基础上加上的惩罚函数部分,当xi在正确一边的时候,ε=0,R为全部的点的数目,C是一个由用户去指定的系数,表示对分错的点加入多少的惩罚,当C很大的时候,分错的点就会更少,但是过拟合的情况可能会比较严重,当C很小的时候,分错的点可能会很多,不过可能由此得到的模型也会不太正确,所以如何选择C是有很多学问的,不过在大部分情况下就是通过经验尝试得到的。

接下来就是同样的,求解一个拉格朗日对偶问题,得到一个原问题的对偶问题的表达式:

蓝色的部分是与线性可分的对偶问题表达式的不同之处。在线性不可分情况下得到的对偶问题,不同的地方就是α的范围从[0, +∞),变为了[0, C],增加的惩罚ε没有为对偶问题增加什么复杂度。

刚刚在谈不可分的情况下,提了一句,如果使用某些非线性的方法,可以得到将两个分类完美划分的曲线,比如接下来将要说的核函数。

    我们可以让空间从原本的线性空间变成一个更高维的空间在这个高维的线性空间下,再用一个超平面进行划分。这儿举个例子,来理解一下如何利用空间的维度变得更高来帮助我们分类的(例子以及图片来自):

下图是一个典型的线性不可分的情况

但是当我们把这两个类似于椭圆形的点映射到一个高维空间后,映射函数为:

    用这个函数可以将上图的平面中的点映射到一个三维空间(z1,z2,z3),并且对映射后的坐标加以旋转之后就可以得到一个线性可分的点集了。

用另外一个哲学例子来说:世界上本来没有两个完全一样的物体,对于所有的两个物体,我们可以通过增加维度来让他们最终有所区别,比如说两本书,从(颜色,内容)两个维度来说,可能是一样的,我们可以加上 作者 这个维度,是在不行我们还可以加入 页码,可以加入 拥有者,可以加入 购买地点,可以加入 笔记内容等等。当维度增加到无限维的时候,一定可以让任意的两个物体可分了

回忆刚刚得到的对偶问题表达式:

我们可以将红色这个部分进行改造,令:

     这个式子所做的事情就是将线性的空间映射到高维的空间,k(x, xj)有很多种,下面是比较典型的两种:

    上面这个核称为多项式核,下面这个核称为高斯核,高斯核甚至是将原始空间映射为无穷维空间,另外核函数有一些比较好的性质,比如说不会比线性条件下增加多少额外的计算量,等等,这里也不再深入。一般对于一个问题,不同的核函数可能会带来不同的结果,一般是需要尝试来得到的。

1)如何进行多分类问题:

上面所谈到的分类都是2分类的情况,当N分类的情况下,主要有两种方式,一种是1 vs (N – 1)一种是1 vs 1,前一种方法我们需要训练N个分类器,第i个分类器是看看是属于分类i还是属于分类i的补集(出去i的N-1个分类)。

后一种方式我们需要训练N * (N – 1) / 2个分类器,分类器(i,j)能够判断某个点是属于i还是属于j。

这种处理方式不仅在SVM中会用到,在很多其他的分类中也是被广泛用到,从林教授(libsvm的作者)的结论来看,1 vs 1的方式要优于1 vs (N – 1)。

SVM避免overfitting,一种是调整之前说的惩罚函数中的C,另一种其实从式子上来看,min ||w||^2这个看起来是不是很眼熟?在最小二乘法回归的时候,我们看到过这个式子,这个式子可以让函数更平滑,所以SVM是一种不太容易over-fitting的方法。

主要的参考文档来自4个地方,wikipedia(在文章中已经给出了超链接了),,(文章中不少图片都是引用或者改自Andrew Moore的ppt,以及prml

3. 利用多特征值实验

%使用matlab自带的关于花的数据进行二分类实验(150*4),其中,每一行代表一朵花,
%共有150行(朵),每一朵包含4个属性值(特征),即4列。且每1-50,51-100,101-150行的数据为同一类,分别为setosa青风藤类,versicolor云芝类,virginica锦葵类
%实验中为了使用svmtrain(只处理二分类问题)因此,将数据分为两类,51-100为一类,1-50和101-150共为一类
%实验先选用2个特征值,再选用全部四个特征值来进行训练模型,最后比较特征数不同的情况下分类精度的情况。

提供视觉分类识别和检测的一个基准测试,提供检测算法和学习性能的标准图像注释数据集和标准的评估系统。

VOC挑战提供两种参加形式,第一种仅用委员会所提供的数据,进行机器学习和训练。第二种是用测试之外的那些数据进行算法的训练。但两种情况必须严格的利用提供的测试数据来生成最终的结果。

VOC挑战赛主要分为三个部分:图像的分类、识别、分割,另外还有一个’动态‘分类项目。

分类是让算法找出测试图片都是属于哪一个标签,对测试图片进行分类,将图片对号入座。

检测是检测出测试图片中由委员会特别圈定的内容,看看算法能否正确的符合圈定的内容。

分割是对图片进行像素级分割,也就是识别出特定物体用一种颜色表示,其他的则作为背景。

动作分类则是在静态图片中预测人类的动作,比如有一张人类跑步的图片,算法根据身体各部分的位置特征判别这个动作是跑步。

人类轮廓识别是识别出人体的部位,这对于一张图片有多少个人或两个人身体部分纠缠在一起的图片识别有重要意义。

我要回帖

更多关于 线性映射单射 的文章

 

随机推荐