积分和微分中值定理,看一下这个题有没有出错?

以下链接为“3.1 微分中值定理《高等数学》--宋浩老师”在线观看地址,点击复制链接并访问就可以查看啦

您好!我是微积分初学者,请问,学习微积分最重要的是要注意什么?最根本的东西是那一块儿?谢谢!  以下文字资料是由(历史新知网)小编为大家搜集整理后发布的内容,让我们赶快一起来看一下吧!

您好!我是微积分初学者,请问,学习微积分最重要的是要注意什么?最根本的东西是那一块儿?谢谢!

极限和导数的知识得打牢。
要深刻理解微积分的基本含义,涉及到有几何意义的,也要记住。
以后还要学偏导数、高阶导数、二重积分、三重积分、微分方程等等,而这些都是基于微积分的基础之上的。
一些常见的极限、导数、积分公式得记住, 比如夹逼法则、sinX的导数、lnX的不定积分等等。

学微积分最重要的是背公式么还是做题

必须做题,公式光背不可能记得住,类似泰勒公式这样复杂的大式子,什么拉格朗日型余项啦佩亚诺型余项啦…………必须通过做题才能深化记忆。否则就算你硬背住了也不会用,微分中值定理是最好的例子。

学微积分最重要的要掌握哪些概念

牛顿微积分中最重要的部分?或者是最成功的标志? 好像是什么微积分基础什么的

推荐一本初学者微积分读本

《微积分之屠龙宝刀》和《微积分之倚天宝剑》
书内内容写的很直接搞笑,不过不是很严谨,难度也不是太高
适合微积分不好的看或者自学的看

初学者自学微积分应选什么书?

微积分难吗?如何学习微积分?

初等数学和高等数学的不同。初等数学主要研究离散的量,而高
等数学则是连续的量。正因为如此,高等数学才很难学习。在此,而
高等数学中微积分是其他数学知识的基础,故结合诸多高校学习微积
分以及我本人亲身学习,在此浅谈下微积分学习的方法。
首先我们应该肯定微积分的伟大,微积分的创立,与其说是数学
史上,不如说是人类历史上的一件大事。时至今日,它对工程技术的
重要性就像望远镜之于天文学,显微镜之于生物学一样。它的出现并
不偶然,它有一个漫长的成长过程。早在古希腊时代,阿基米德等人
的著作就已含有积分学的萌芽。以后经过一千多年的沉寂,欧洲在文
艺复兴以后对阿基米德的学说重新掀起研究的热潮,涌现出许多先驱
而微积分真正的确立是在
从笛卡儿的解析几何开始,
著是微积分的建立,它将数学的历史带入一个新的时期——变数数学
时期。欧氏几何也好,上古和中世纪的代数学也好,都是一种常量数
学,微积分才是真正的变数数学,是数学中的大革命。微积分在数学
发展史上可以认为是一个伟大的成就,由于微积分的创立不仅解决了
当时的一些重要的科学问题,而且由此产生了数学的一些重要分支,
如微分方程、无穷级数、微分几何、变分法、复变函式等。
微积分解决了一些重要问题:①求瞬时速度②求曲线的切线③求
函式的最值④求曲线长。这些问题对天文学、物理学等学科的发展有
重要的促进作用。因为它的重要也赋予了其难学的特性,是大一理科
学子头疼的主要数学问题。
预习十分重要。预习并不是自学,而是浏览式地看书,找到书中
的重点难点,以便“集中式的听课”

如果时间不多,你可以浏览一
下教师将要将要讲的主要内容,获得一个大概的印象,这可以在一定
程度上帮助你在课堂上跟上教师的思路,如果时间比较充裕,除了浏
览之外,还可以进一步细致地阅读部分内容,并且准备好问题,看一
下自己的理解与教师讲解的有什么区别,
有哪些问题需要与教师讨论。
如果能够做到这些,那么你的学习就会变得比较主动、深入,会取得
比较好的效果。不要急于做题,而要先对教材进行深入的思考。做题
时不要轻易去翻答案,而是应该反复思考、与同学讨论。一道题做不
出来,比做出来的收获大。学习的信心也十分重要。提高信心,培养
良好的心理素质,勇于克服各种困难;不要因为一时的没有兴趣而放
而是靠后天慢慢培养的。
刻苦勤奋,实现自己人生的辉煌,这才是当代大学生应有的素质。
上课要就预习中的难点重点集中听讲,针对重点难点可向老师直
接提问,在大学的课堂上老师更期望学生能“打断”他的讲课,老师
更希望与学生好好交流探讨课堂知识,课堂上提问既能得到老师特别
的讲解也能就题论题。课堂上要勇于发问。上课时,如果你有任何疑
问,应该立即发问。因为你的问题,有可能正好就是其他同学不敢问
的问题;也有可能是在座所有的人
课堂上发问,不仅能对自己也是对全班同学的莫大帮助。一个活泼生
动的学习环境,不单是只靠老师来营造,也需要同学们的参与,老师
们都很希望也很重视同学们在课堂上能够有更主动的表现。相信这样
互动的学习过程,一定能让你在学习微积分上有更多的收获。
微积分学习中会遇到许多积分公式,记住并熟练的运用一些积分
公式可减缩做题时间并对今后的学习有很大的帮助作用,而积分公式
多而又繁琐,需要特别的记忆。多次推导公式提高对公式的理解,这
也是变相的熟练运用其他公式,数学学习中公式的推导需要其他公式
的辅助,基本积分公式对复杂的积分公式具有很大的推导作用
微积分的学习必须先通过大量的习题锻炼手感。初学者做微积分
吉米多维奇习题集是不错的选择,
了诸多型别的积分习题,从中可看到积分习题中的所有型别,并且有
详细的解析过程,是不可或缺的习题集。
,第一卷两本,第二、三卷各三本,共八本。例如,定积分
(方波在频域里形式)是如何计算出来的,给出了好几种经
典、历史的方法。二是要多“看”
(看有一定技巧性的题解,从中学习
。从习题中看门道,看解题方法,并总结归纳

一的好方法是由「做」中学。由于解题时,你必须把学过的理论再重
这个过程会让你学到如何从不同的角度来看这些理论,
也会帮助你发现先前所忽略的东西。所以,尽可能多试着先由自己来
解题。和其他同学或老师一起讨论课程内容。每个人都有自己习惯的
看事情方式,往往一不小心就会落入盲点而不自知。所以,即便你认
为你已经了解课程内容,建议你还是应该多和其他同学或是老师共同
讨论;这样一来,你才能察觉你忽略的小细节,或者一些你根本没有
学习后的复习是不可或缺的,复习不是简单的重复,应当用自己
的表达方式再现所学的知识,例如对某个定理的复习,不是再读一遍
书或课堂笔记,而是离开书本和笔记,回忆有关内容,不清楚之处再
对照教材或笔记。另外,复习时的思路不应当教师讲课或者教科书的
翻版,一个可供参考的方法是采用倒叙式。从定理的结论倒推,为了
得到定理的结论,是怎样进行推理的,定理的条件用在何处。这样倒
臵思维方式,更加接近这个定理的发现的思路,是一种创造性的思维

如何复习概念?首先对于重要的定义,要大家能够用自己的语言
正确地进行复述。这是理解和应用它们的前提条件。其次,尽可能用
具体形象的例子解释或者表现抽象概念,你能举出越多的实际例子说
明某个概念,那么你对这个概念的理解就越加生动和深入。

学习微积分后需要运用到后面的定积分和不定积分中,真正的做
到学以致用。学习时我们要考虑学到“面面俱到”学后好明白为什么
要学好微积分,对我们的意义是什么?

数学训练逻辑思考!逻辑思考的能力不管它是不是与生俱有的,
方法之一就是透过学习数学。
数学解题会教你如何接近问题、
学到如何抽丝剥茧地看出问题的关键、
问出适切的问题、从不同的角度来思考问题等等。逻辑思考的能力比
数学有用太多,例如它对学新的语言、组织与计画等也很有帮助。
总而言之,每位学生都应该而且可以为微积分找到学习动机。
你不必认同“微积分是人类最伟大的成就之一,这个理论之美让人目
眩神迷”但至少把微积分看作是掌握学科的重要工具,而且是教你学
习如何有系统地进攻与解决问题的重要理论。

球的体积微积分推导。具体一点。我是初学者。

  • 微积分是高等数学中研究函式的微分、积分以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。

  • 微分学包括求导数的运算,是一套关于变化率的理论。它使得函式、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。

  • 微积分的基本概念和内容包括微分学和积分学。

  • 微分学的主要内容包括:极限理论、导数、微分等。

  • 积分学的主要内容包括:定积分、不定积分等。

上网找个视讯看看,边看边学习,然后再练习试试,微积分并不难的,祝你好运~~

大一微积分两个重要的极限

  作为考研课程中的公共课程,数学在其中起着至关重要的作用。高等数学在某种程度上是很多同学的老大难,往年考生的得分不是很理想,大家要重视起来。关于高等数学复习,下面小编整理了2020考研高等数学各章节的定理定义总结,一起来看看吧 。

  第一章 函数与极限

  1、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1为下界;如果有f(x)≤K2,则有上界,K2称为上界。函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。

  2、数列的极限定理(极限的唯一性)数列{xn}不能同时收敛于两个不同的极限。

  定理(收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}一定有界。

  如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。

  定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1,1,-1,(-1)n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。

  3、函数的极限函数极限的定义中0<|x-x0|表示x≠x0,所以x→x0时f(x)有没有极限与f(x)在点x0有没有定义无关。

  函数f(x)当x→x0时极限存在的充分必要条件是左极限右极限各自存在并且相等,即f(x0-0)=f(x0+0),若不相等则limf(x)不存在。

  一般的说,如果lim(x→∞)f(x)=c,则直线y=c是函数y=f(x)的图形水平渐近线。如果lim(x→x0)f(x)=∞,则直线x=x0是函数y=f(x)图形的铅直渐近线。

  4、极限运算法则定理有限个无穷小之和也是无穷小;有界函数与无穷小的乘积是无穷小;常数与无穷小的乘积是无穷小;有限个无穷小的乘积也是无穷小;定理如果F1(x)≥F2(x),而limF1(x)=a,limF2(x)=b,那么a≥b.

  单调有界数列必有极限。

  6、函数的连续性设函数y=f(x)在点x0的某一邻域内有定义,如果函数f(x)当x→x0时的极限存在,且等于它在点x0处的函数值f(x0),即lim(x→x0)f(x)=f(x0),那么就称函数f(x)在点x0处连续。

  如果x0是函数f(x)的间断点,但左极限及右极限都存在,则称x0为函数f(x)的第一类间断点(左右极限相等者称可去间断点,不相等者称为跳跃间断点)。非第一类间断点的任何间断点都称为第二类间断点(无穷间断点和震荡间断点)。

  定理有限个在某点连续的函数的和、积、商(分母不为0)是个在该点连续的函数。

  定理如果函数f(x)在区间Ix上单调增加或减少且连续,那么它的反函数x=f(y)在对应的区间Iy={y|y=f(x),x∈Ix}上单调增加或减少且连续。反三角函数在他们的定义域内都是连续的。

  定理(最大值最小值定理)在闭区间上连续的函数在该区间上一定有最大值和最小值。如果函数在开区间内连续或函数在闭区间上有间断点,那么函数在该区间上就不一定有最大值和最小值。

  定理(有界性定理)在闭区间上连续的函数一定在该区间上有界,即m≤f(x)≤M.定理(零点定理)设函数f(x)在闭区间[a,b]上连续,且 f(a)与f(b)异号(即f(a)×f(b)<0),那么在开区间(a,b)内至少有函数f(x)的一个零点,即至少有一点 ξ(a<ξ

  推论在闭区间上连续的函数必取得介于最大值M与最小值m之间的任何值。

  第二章 导数与微分

  2、函数f(x)在点x0处可导=>函数在该点处连续;函数f(x)在点x0处连续≠>在该点可导。即函数在某点连续是函数在该点可导的必要条件而不是充分条件。

  3、原函数可导则反函数也可导,且反函数的导数是原函数导数的倒数。

  4、函数f(x)在点x0处可微=>函数在该点处可导;函数f(x)在点x0处可微的充分必要条件是函数在该点处可导。

  第三章 中值定理与导数的应用

  1、定理(罗尔定理)如果函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且在区间端点的函数值相等,即f(a)=f(b),那么在开区间(a,b)内至少有一点ξ(a<ξ

  2、定理(拉格朗日中值定理)如果函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,那么在开区间(a,b)内至少有一点 ξ(a<ξ

  3、定理(柯西中值定理)如果函数f(x)及F(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且F'(x)在(a,b)内的每一点处均不为零,那么在开区间(a,b)内至少有一点ξ,使的等式[f(b)-f(a)]/[F(b)-F(a)]=f'(ξ)/F'(ξ)成立。

  4、洛必达法则应用条件只能用与未定型诸如0/0、∞/∞、0×∞、∞-∞、00、1∞、∞ 0等形式。

  5、函数单调性的判定法设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,那么:(1)如果在(a,b)内 f'(x)>0,那么函数f(x)在[a,b]上单调增加;(2)如果在(a,b)内f’(x)<0,那么函数f(x)在[a,b]上单调减少。

  如果函数在定义区间上连续,除去有限个导数不存在的点外导数存在且连续,那么只要用方程f'(x)=0的根及f’(x)不存在的点来划分函数f(x)的定义区间,就能保证f'(x)在各个部分区间内保持固定符号,因而函数f(x)在每个部分区间上单调。

  6、函数的极值如果函数f(x)在区间(a,b)内有定义,x0是(a,b)内的一个点,如果存在着点x0的一个去心邻域,对于这去心邻域内的任何点x,f(x)f(x0)均成立,就称f(x0)是函数f(x)的一个极小值。

  在函数取得极值处,曲线上的切线是水平的,但曲线上有水平曲线的地方,函数不一定取得极值,即可导函数的极值点必定是它的驻点(导数为0的点),但函数的驻点却不一定是极值点。

  定理(函数取得极值的必要条件)设函数f(x)在x0处可导,且在x0处取得极值,那么函数在x0的导数为零,即f'(x0)=0.定理(函数取得极值的第一种充分条件)设函数f(x)在x0一个邻域内可导,且f’(x0)=0,那么:(1)如果当x取x0左侧临近的值时,f'(x)恒为正;当x去 x0右侧临近的值时,f’(x)恒为负,那么函数f(x)在x0处取得极大值;(2)如果当x取x0左侧临近的值时,f'(x)恒为负;当x去x0右侧临近的值时,f’(x)恒为正,那么函数f(x)在x0处取得极小值;(3)如果当x取x0左右两侧临近的值时,f'(x)恒为正或恒为负,那么函数 f(x)在x0处没有极值。

  定理(函数取得极值的第二种充分条件)设函数f(x)在x0处具有二阶导数且f'(x0)=0,f''(x0)≠0那么:(1)当f''(x0)& lt;0时,函数f(x)在x0处取得极大值;(2)当f''(x0)>0时,函数f(x)在x0处取得极小值;驻点有可能是极值点,不是驻点也有可能是极值点。

  定理设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内具有一阶和二阶导数,那么(1)若在(a,b)内f'’(x)>0,则 f(x)在闭区间[a,b]上的图形是凹的;(2)若在(a,b)内f'’(x)<0,则f(x)在闭区间[a,b]上的图形是凸的。

  判断曲线拐点(凹凸分界点)的步骤(1)求出f'’(x);(2)令f'’(x)=0,解出这方程在区间(a,b)内的实根;(3)对于(2)中解出的每一个实根x0,检查f'’(x)在x0左右两侧邻近的符号,如果f'’(x)在x0左右两侧邻近分别保持一定的符号,那么当两侧的符号相反时,点 (x0,f(x0))是拐点,当两侧的符号相同时,点(x0,f(x0))不是拐点。

  在做函数图形的时候,如果函数有间断点或导数不存在的点,这些点也要作为分点。

  1、原函数存在定理定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F(x),使对任一x∈I都有F'(x)=f(x);简单的说连续函数一定有原函数。

  分部积分发如果被积函数是幂函数和正余弦或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次。如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可设对数和反三角函数为u.

  2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数。

  1、定积分解决的典型问题(1)曲边梯形的面积(2)变速直线运动的路程

  2、函数可积的充分条件定理设f(x)在区间[a,b]上连续,则f(x)在区间[a,b]上可积,即连续=>可积。

  定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积。

  3、定积分的若干重要性质性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0.推论如果在区间[a,b]上f(x)≤g(x)则 ∫abf(x)dx≤∫abg(x)dx.推论|∫abf(x)dx|≤∫ab|f(x)|dx.性质设M及m分别是函数f(x)在区间[a,b]上的最大值和最小值,则m(b-a)≤∫abf(x)dx≤M(b-a),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。

  性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在一个点ξ,使下式成立:∫abf(x)dx=f(ξ)(b-a)。

  4、关于广义积分设函数f(x)在区间[a,b]上除点c(a

  第六章 定积分的应用

  求平面图形的面积(曲线围成的面积)

  直角坐标系下(含参数与不含参数)

  旋转体体积(由连续曲线、直线及坐标轴所围成的面积绕坐标轴旋转而成)(且体积V=∫abπ[f(x)]2dx,其中f(x)指曲线的方程)

  平行截面面积为已知的立体体积(V=∫abA(x)dx,其中A(x)为截面面积)

  第七章 多元函数微分法及其应用

  1、多元函数极限存在的条件极限存在是指P(x,y)以任何方式趋于P0(x0,y0)时,函数都无限接近于A,如果P(x,y)以某一特殊方式,例如沿着一条定直线或定曲线趋于P0(x0,y0)时,即使函数无限接近某一确定值,我们还不能由此断定函数极限存在。反过来,如果当P(x,y)以不同方式趋于P0(x0,y0)时,函数趋于不同的值,那么就可以断定这函数的极限不存在。例如函数:f(x,y)=

  性质(最大值和最小值定理)在有界闭区域D上的多元连续函数,在D上一定有最大值和最小值。

  性质(介值定理)在有界闭区域D上的多元连续函数,如果在D上取得两个不同的函数值,则它在D上取得介于这两个值之间的任何值至少一次。

  3、多元函数的连续与可导如果一元函数在某点具有导数,则它在该点必定连续,但对于多元函数来说,即使各偏导数在某点都存在,也不能保证函数在该点连续。这是因为各偏导数存在只能保证点P沿着平行于坐标轴的方向趋于P0时,函数值f(P)趋于f(P0),但不能保证点P按任何方式趋于P0时,函数值 f(P)都趋于f(P0)。

  4、多元函数可微的必要条件一元函数在某点的导数存在是微分存在的充分必要条件,但多元函数各偏导数存在只是全微分存在的必要条件而不是充分条件,即可微=>可偏导。

  5、多元函数可微的充分条件定理(充分条件)如果函数z=f(x,y)的偏导数存在且在点(x,y)连续,则函数在该点可微分。

  6.多元函数极值存在的必要、充分条件定理(必要条件)设函数z=f(x,y)在点(x0,y0)具有偏导数,且在点(x0,y0)处有极值,则它在该点的偏导数必为零。

  7、多元函数极值存在的解法(1)解方程组fx(x,y)=0,fy(x,y)=0求的一切实数解,即可求得一切驻点。

  (2)对于每一个驻点(x0,y0),求出二阶偏导数的值A、B、C.(3)定出AC-B2的符号,按充分条件进行判定f(x0,y0)是否是极大值、极小值。

  注意:在考虑函数的极值问题时,除了考虑函数的驻点外,如果有偏导数不存在的点,那么对这些点也应当考虑在内。

  1、二重积分的一些应用曲顶柱体的体积曲面的面积(A=∫∫√[1+f2x(x,y)+f2y(x,y)]dσ)

  平面薄片的质量平面薄片的重心坐标(x=1/A∫∫xdσ,y=1/A∫∫ydσ;其中A=∫∫dσ为闭区域D的面积。

  平面薄片对质点的引力(FxFyFz)

  2、二重积分存在的条件当f(x,y)在闭区域D上连续时,极限存在,故函数f(x,y)在D上的二重积分必定存在。

  3、二重积分的一些重要性质性质如果在D上,f(x,y)≤ψ(x,y),则有不等式∫∫f(x,y)dxdy≤∫∫ψ(x,y)dxdy,特殊地由于-|f(x,y)|≤f(x,y)≤|f(x,y)|又有不等式|∫∫f(x,y)dxdy|≤∫∫|f(x,y)|dxdy.性质设M,m分别是 f(x,y)在闭区域D上的最大值和最小值,σ是D的面积,则有mσ≤∫∫f(x,y)dσ≤Mσ。

  性质(二重积分的中值定理)设函数f(x,y)在闭区域D上连续,σ是D的面积,则在D上至少存在一点(ξ,η)使得下式成立:∫∫f(x,y)dσ=f(ξ,η)*σ4、二重积分中标量在直角与极坐标系中的转换把二重积分从直角坐标系换为极坐标系,只要把被积函数中的x,y 分别换成ycosθ、rsinθ,并把直角坐标系中的面积元素dxd

  (注:本文来自网络,如有侵权,请联系删除)

我要回帖

更多关于 微分中值定理的证明题 的文章

 

随机推荐