水中电导率与cod的关系和总溶解性固体在数值上有什么关系?Toc和COD在数值上大概有什么关系?

导读什么叫总有机碳(TOC)?什么叫总需氧量(TOD)?什么叫生化需氧量(BOD)?什么叫水的溶解氧(DO)?何谓水的电阻率?本文将为大家简单介绍。干货:化学需氧量——实用操作方法讲解(点击可以阅读原文)化学需氧量(COD)知识及相关标准文本学习(点击可以阅读原文)有关化学分析中存在的误差分析(点击可以阅读原文)化学滴定分析法,一篇文章总结(点击可以阅读原文)12种非饮用水水质检测标准汇总!(点击可以阅读原文)十三种污水处理基础指标的分析方法汇总(文中可下载标准文稿)(点击可以阅读原文)收藏:实验室用水知识大全(点击可以阅读原文)实验用水的等级与指标(点击可以阅读原文)沿用23年的地下水质量标准(GB/T 14848)变更,2017版已发布(阅读全文可下载)(点击可以阅读原文)什么叫总有机碳(TOC)?水中的有机物质的含量,以有机物中的主要元素一碳的量来表示,称为总有机碳。TOC的测定类似于TOD的测定。在950℃的高温下,使水样中的有机物气化燃烧,生成CO2,通过红外线分析仪,测定其生成的CO2之量,即可知总有机碳量。在测定过程中水中无机的碳化合物如碳酸盐、重碳酸盐等也会生成CO2,应另行测定予以扣除。若将水样经0.2μm微孔滤膜过滤后,测得的碳量即为溶解性有机碳(DOC)。TOC、DOC是较为经常使用的水质指标。什么叫总需氧量(TOD)?总需氧量的测定,是在特殊的燃烧器中,以铂为催化剂,于900℃下将有机物燃烧氧化所消耗氧的量,该测定结果比COD更接近理论需氧量。TOD用仪器测定只需约3min可得结果,所以,有分析速度快、方法简便,干扰小、精度高等优点,受到了人们的重视。如果TOD与BOD5间能确定它们的相关系数,则以TOD指标指导生产有更好的实用意义。什么叫生化需氧量(BOD)?如何以生化需氧量(BOD)来判断所谓生化需氧量(BOD)是在有氧的条件下,由于微生物的作用,水中能分解的有机物质完全氧化分解时所消耗氧的量称为生物化学需氧量简称生化需氧量。它是以水样在一定的温度(如20℃)下,在密闭容器中,保存一定时间后溶解氧所减少的量(mg/L)来表示的。当温度在20℃时,一般的有机物质需要20天左右时间就能能完成氧化分解过程,而要全部完成这一分解过程就需100天。但是,这么长的时间对于实际生产控制来说就失去了实用价值。因此,目前规定在20℃下,培养5天作为测定生化需氧量的标准。这时候测得的生化需氧量就称为五日生化需氧量,用BOD5表示。如果是培养20天作为测定生化需氧量的标准时,这时候测得的生化需氧量就称为20天生化需氧量,用BOD20&shy;表示。生化需氧量(BOD)的多少,表明水体受有机物污染的程度,反映出水质的好坏。什么叫化学需氧量(COD)?所谓化学需氧量(COD),是在一定的条件下,采用一定的强氧化剂处理水样时,所消耗的氧化剂量。它是表示水中还原性物质多少的一个指标。水中的还原性物质有各种有机物、亚硝酸盐、硫化物、亚铁盐等。但主要的是有机物。因此,化学需氧量(COD)又往往作为衡量水中有机物质含量多少的指标。化学需氧量越大,说明水体受有机物的污染越严重。化学需氧量(COD)的测定,随着测定水样中还原性物质以及测定方法的不同,其测定值也有不同。目前应用最普遍的是酸性高锰酸钾氧化法与重铬酸钾氧化法。高锰酸钾(KmnO4)法,氧化率较低,但比较简便,在测定水样中有机物含量的相对比较值时,可以采用。重铬酸钾(K&shy;2Cr2O7)法,氧化率高,再现性好,适用于测定水样中有机物的总量。有机物对工业水系统的危害很大。含有大量的有机物的水在通过除盐系统时会污染离子交换树脂,特别容易污染阴离子交换树脂,使树脂交换能力降低。有机物在经过预处理时(混凝、澄清和过滤),约可减少50%,但在除盐系统中无法除去,故常通过补给水带入锅炉,使炉水pH值降低。有时有机物还可能带入蒸汽系统和凝结水中,使pH降低,造成系统腐蚀。在循环水系统中有机物含量高会促进微生物繁殖。因此,不管对除盐、炉水或循环水系统,COD都是越低越好,但并没有统一的限制指标。在循环冷却水系统中COD(DmnO4法)>5mg/L时,水质已开始变差。什么叫水的溶解氧(DO)?溶解于水中的游离氧称为溶解氧(用DO表示),常以O2mg/L、mL/L等单位来表示。天然水中氧的主要来源是大气溶于水中的氧,其溶解量与温度,压力有密切关系。温度升高氧的溶解度下降,压力升高溶解度增高。天然水中溶解氧含量约为8~14mg/L,敞开式循环冷却水中溶解氧一般约为6~8mg/L。水体中的溶解氧含量的多少,也反映出水体遭受到污染的程度。当水体受到有机物污染时,由于氧化污染物质需要消耗氧,使水中所含的溶解氧逐渐减少。污染严重时,溶解氧会接近于零,此时厌氧菌便滋长繁殖起来,并发生有机污染物的腐败而发臭。因此,溶解氧也是衡量水体污染程度的一个重要指标。何谓水的电阻率?在测定水的导电性能时,与水的电阻值大小有关,电阻值大,导电性能差,电阻值小,导电性能就良好。根据欧姆定律,在水温一定的情况下,水的电阻值R大小与电极的垂直截面积F成反比,与电极之间的距离L成正比,如下式:R=ρ式中ρ——电阻率,或称比电阻。电阻的单位为欧姆(欧,代号Ω),或用微欧(μΩ),1Ω等于106μΩ;电阻率的国际制(SI)单位为欧米(Ω&#8226;m)。如果电极的截面积F做成1cm2,两电极间的距离L为1cm,电阻率的单位为Ω&#8226;cm时,那么电阻值就等于电阻率值。水的电阻率的大小,与水中含盐量的多少、水中离子含量、离子的电荷数以及离子的运动速度有关。因此,纯净的水电阻率很大,超纯水电阻率就更大。水越纯,电阻率越大。什么是水的酸度?水的酸度是指水中所含能提供H离子与强碱(如NaOH、KOH等)发生中和反应的物质总量。这些物质能够放出H,或者经过水解能产生H。水中形成酸度的物质有三部分:(1)水中存在的强酸能全部离解出H,如硫酸(H2SO4)、盐酸(HCl)、硝酸(HNO3)等;(2)水中存在的弱酸物质,如游离的二氧化碳(CO2)、碳酸(H2CO3)、硫化氢(H2S)、醋酸(CH3COOH)和各种有机酸等;(3)存在的强酸弱碱组成的盐类,如铝、铁、铵等离子与强酸所组成的盐类等。天然水中,酸度的组成主要是弱酸,也就是碳酸。天然水中在一般的情况下不含强酸酸度。水中酸度的测定是用强碱的标准溶液(如0.1mol/LNaOH)来滴定水中。如用甲基橙指示剂所测得的酸度是指强酸酸度和强酸弱碱形成盐类的酸度;而用酚酞指示剂所测得的酸度包括了上述三部分酸度,即称为总酸度。如何根据硬度和碱度的关系了解水质?天然水中的硬度主要是指Ca2、Mg2等金属离子,水中的碱度主要是指碳酸氢盐碱度HCO3-。而水中主要存在的离子有Ca2、Mg2、Na、K和HCO3-、SO42-、Cl-等。水中的硬度与硬度之间的关系分为三种情况。(1)碱度>硬度(以mol/L计)HCO3->(Ca2Mg2)水中的硬度(Ca2、Mg2)都变成为碳酸氢盐,并同时还有Na、K的碳酸氢盐,但没有非碳酸盐硬度在。此时,碱度减去硬度所得的差值等于Na、K的碳酸氢盐。这部分多出的Na、K的碳酸氢盐碱度即所谓过剩碱度亦称为负硬度。(2)碱度=硬度(以mol/L计)即HCO3-=(Ca2Mg2)此时只有Ca2、Mg2的硬度及其碳酸氢盐碱度,既无非碳酸盐硬度,亦无Na、K的碳酸氢盐。(3)碱度<硬度(以mol/L计)即HCO3-<(Ca2Mg2)。此时又有两种情况,一是Ca2>HCO3-的钙硬水,此时水中有非碳酸盐硬度CaSO4、MgSO4的存在,但没有镁的碳酸盐硬度Mg(HCO3)2。另一种情况是Ca2>HCO3-的镁硬水,水中有镁的碳酸盐硬度Mg(HCO3)2的存在,但没有钙的非碳酸盐硬度存在,而有镁的非碳酸盐硬度MgSO4的存在。但上述两种情况,无论是哪种,水中都有非碳酸盐的硬度存在,而没有Na、K的碳酸氢盐存在。水中各种碱度的相互关系如何?水中的碱度是用盐酸中和的方法来测定的。在滴定水的碱度时采用两种指示剂来指示滴定的终点。用酚酞作指示剂时,滴定的终点为pH8.2~8.4,称为酚酞碱度或P碱度。此时,水中的氢氧化物全部被中和,碳酸盐转化为碳酸氢盐,就是碳酸盐被中和了一半。即P碱度=CO32--全部OH-。用甲基橙作指示剂时,滴定的终点pH为4.3~4.5,称为甲基橙碱度或M碱度。此时,水中的氢氧化物、碳酸盐及碳酸氢盐全部被中和,所测得的水中各种弱酸盐类的总和,因此又称为总碱度。即M碱度=全部HCO3-全部CO32-全部OH-。如果水中单独存在OH-碱度,水的pH>11.0;水中同时存在OH-、CO32-时,pH9.4~11.0;如水中只有CO32-存在时,pH=9.4;当CO32-、HCO3-共同存在时,pH8.3~9.4;单一的HCO3-存在时,pH=8.3;但pH<8.3时,水中碱度也只有HCO3-存在,此时的pH值变化只与HCO3-和游离的CO2含量有关。什么是水的碱度?水中的碱度有哪几种形式存在?水的碱度是指水中能够接受H离子与强酸进行中和反应的物质含量。水中产生碱度的物质主要由碳酸盐产生的碳酸盐碱度和碳酸氢盐产生的碳酸氢盐碱度,以及由氢氧化物存在和强碱弱酸盐水解而产生的氢氧化物碱度。所以,碱度是表示水中CO32-、HCO3-、OH-及其他一些弱酸盐类的总和。这些盐类的水溶液都呈碱性,可以用酸来中和。然而,在天然水中,碱度主要是由HCO3-的盐类所组成。可认为:总碱度M=[HCO3-]2[CO32-][OH-]-[H]当pH值大于7.0时,[H]可略去,故,M=c(Bx-)=[HCO3-][2CO32-][OH-]mol/L形成水中碱度的物质碳酸盐和碳酸氢盐可以共存,碳酸盐和氢氧化物也可以共存。然而,碳酸氢盐与氢氧化物不能同时存在,它们在水中能起如下反应:HCO3-OH-==CO32-H2O由此可见,碳酸盐、碳酸氢盐、氢氧化物可以在水中单独存在,除此之外,还有两种碱度的组合,所以,水中的碱度有五种形式存在,即:(1)碳酸氢盐碱度HCO3-;(2)碳酸盐碱度CO32-;(3)氢氧化物碱度OH-;(4)碳酸氢盐和碳酸盐碱度HCO3-CO32-;(5)碳酸盐和氢氧化物碱度CO32-OH-。硬水对工业生产有什么危害?硬水作为工业生产用的冷却水,会使换热器结水垢,严重的不仅会阻碍水流通道,使热交换效果大大降低,影响生产的顺利进行,甚至被迫停产。结垢还会产生垢下腐蚀,会使换热器穿孔而损坏,不仅物料漏损,而且增加设备投资费用,浪费钢材。硬水用于洗涤,也往往影响产品质量,如纺织印染会造成织物的斑点,不仅影响美观,而且影响强度。硬水作为锅炉用水,在锅内加热后,经过蒸发浓缩过程,使锅炉受热面结水垢,而水垢的导热性能极差。水垢的导热性能只有钢材的几百分之一。在锅炉内结垢之后,如果仍要达到无水垢时同样的炉水温度,势必要提高受热面的壁温,例如1.01Mpa(10atm)的锅炉,壁温为280℃,当硅酸盐水垢达1mm厚时,要达到同样的炉水温度,壁温要提高到680℃,此时钢板的强度自3.92Mpa(40kgf/cm2)降至0.98Mpa(10kgf/cm2),严重的会引起爆裂事故。金属温度升高还会使金属伸长,1m长的钢板,每升高100℃,伸长1.2mm,增加材料应力,导致损坏。此外,结垢之后,使受热面的传热情况变坏,燃烧热也不能很好地传给水,降低了锅炉的热效率,从而白白浪费燃料,如结有1.5mm厚硫酸盐水垢,就要浪费燃料10%以上,并使锅炉的出力大为降低。结水垢之后,还得经常清洗,不仅影响生产,且而降低锅炉使用寿命,还要耗费人力物力。因此,硬水对工业生产的危害很大,必须根据产品或设备对水质的要求,对硬水进行软化、除盐或其他有效的水处理。硬度的单位是如何表示的?硬度的常用单位是mmol/L或mg/L。过去常用的当量浓度N现已停用。换算时,1N=0.5mol/L。由于硬度并非是由单一的金属离子或盐类形成的,因此,为了有一个统一的比较标准,有必要换算为另一种盐类。通常用CaO或者是CaCO3的质量浓度来表示。当硬度为0.5mmol/L时,等于28mg/L的CaO,或等于50mg/L的CaCO3。此外,各国也有的用德国度、法国度来表示硬度。1德国度等于10mg/L的CaO,1法国度等于10mg/L的CaCO3。0.5mmol/L相当于2.8德国度、5.0法国度。什么是水的总固体、溶解固体和悬浮固体?水中除了溶解气体之外的一切杂质称为固体。而水中的固体又可分为溶解固体和悬浮固体。这二者的总和即称为水的总固体。溶解固体是指水经过过滤之后,那些仍然溶于水中的各种无机盐类、有机物等。悬浮固体是指那些能过滤掉的不溶于水中的泥砂、黏土、有机物、微生物等悬浮物质。总固体的测定是蒸干水分再称重得到的。因此选定蒸干时的温度有很大的关系,一般规定控制在105~110℃。为什么有的水会有臭味?清净的水是无臭、无味、无色透明的液体。但被污染的水体,常会使人感觉有不正常的气体。用鼻闻到的称为鼻,用口尝到的称为味。水的臭味主要来源有:(1)水中的水生动物、植物或微生物的繁殖和腐烂而发出的臭味;(2)水中有机物质的腐败分解而散发的臭味;(3)水中溶解气体如SO2、H2S及NH3的臭味;(4)溶解盐类或泥土的气味;(5)排入水体的工业废水所含杂质如石油、酚类等的臭味;(6)消毒水过程中加入氯气等的气味。由于上述的各种原因,所以有的水会有臭味。例如湖泊、沼泽水中因水藻繁殖或有机物过多而带有鱼腥气味及霉烂气味;浑浊的河水常有泥土气味或涩味;温泉水常带有硫磺气味;地下水有时会有硫化氢味;含氧量较多的水、含硫酸钙量多的水、有机物多的水或含NO2-高的水,常有不正常的甜味;水中含有氯化钠而带有咸味;水中含有硫酸镁,硫酸镁带有苦味;含铁水带有涩味;生活污水及工业废水的气味更是多种多样。水中的主要阴、阳离子对水质有些什么影响?水中主要的阴离子有Cl-、SO42-、HCO3-、CO32-、OH-等,其中HCO3-、CO32-、OH-在水中常与阳离子K、Na、Mg2、Ca2等组成硬度和碱度,它们之间的量的变化要影响水的pH值变化,从这一变化可以知道水的属性是腐蚀型的或是结垢型的。因此,它们是影响水的性质的主要离子。Cl-是水中最为常见的阴离子,是引起水质腐蚀性的催化剂,能强烈地推动和促进金属表面电子的交换反应,特别是对水系统的不锈钢材料,应力集中处(如热应力、震荡应力等),会引起Cl-的富集,加速电化学腐蚀过程。SO42-也是水中较为普遍存在的腐蚀性阴离子,使水的电导率上升,同时又能与阳离子Ca2等生成CaSO4沉淀而结垢,它又不是水中硫酸盐还原菌的营养源。水中主要的阳离子有K、Na、Ca2、Mg2和Fe3、Mn2等,其中Na是水中最为常见的阳离子,Na、K的存在使水的电导率上升,增加了水的不稳定倾向;其中Ca2、Mg2是组成水中硬度的主要离子,在一定的条件下,常在受热设备的表面结垢,影响传热效果。Fe3、Mn2很易生成Fe(OH)3、Mn(OH)2的沉淀形成水垢,从而产生垢下腐蚀,又是铁细菌生长的促进剂。为方便大家学习,我们整理了以上述指标相关方法17个标准文稿新旧版本。声明:1、下载的文章仅供个人学习使用,不能替代国家标准正式文本。正式文本,请购买国家相关主管部门正式版本。
1 总有机碳(TOC)的定义及测定意义总有机碳是指水体中溶解性和悬浮性有机物含碳的总量。水中的有机物的种类很多,目前还不能全部进行分离鉴定,常用总有机碳(TOC)表示。从二十世纪三十年代开始,TOC的方法被用于检测水质。但是过程复杂且需要很长的分析时间。二十世纪六十年代开始,开发了燃烧、非色散红外检测结合手动注射器注射的方法。最初,TOC主要被用作COD和BOD的替代或补充方法。随着TOC分析仪的普及,TOC作为一个快速检定水质的综合指标,通常作为评价水体有机物污染程度的重要依据。水中碳的形式包括非挥发性有机碳(如糖类)、挥发性有机碳(如硫醇、烷烃、醇等)、部分挥发性碳(低分子量的油)和含碳物质吸入或嵌入的无机悬浮物。但由于TOC不能反映水中有机物的种类和组成,因而不能反映总量相同的总有机碳所造成的不同污染后果。相比于BOD(生化需氧量)或COD(化学需氧量)的测定,TOC的测定采用燃烧法,能将有机物全部氧化,因此,TOC比BOD或COD更能反映有机物的总量。碳的各种形态:总碳(TC, Total carbon)无机碳 (IC, Inorganic carbon)总有机碳(TOC, Total organic carbon)不可吹除有机碳(NPOC, Non-Purgeable organic carbon)可吹除有机碳(POC, Purgeable organic carbon)溶解性有机碳(DOC, Dissolved organic carbon)悬浮状有机碳(SOC, Suspended organic carbon)挥发性有机碳(VOC, Volatile organic carbon)非挥发性有机碳(NVOC, Non-volatile organic carbon)碳的各种形态2 TOC分析仪的基本原理TOC的测定原理:溶液中有机碳氧化转化为二氧化碳,在消除干扰物质后由检测器测得二氧化碳含量。再利用二氧化碳与总有机碳之间碳含量的对应关系,对溶液中的总有机碳进行定量测定。市面上常见的TOC分析仪都有两大基本功能:第一,首先将水中总有机碳充分氧化,生成CO2;第二,测试新产生的CO2。总有机碳的氧化方式:1)高温燃烧氧化:高温燃烧法有几种方式。大多数干法氧化采用第一种方式。即在680℃时,使用Pt、Cu等过渡金属的氧化物催化。第二种是将液体样品直接注入燃烧,通过1000~1100℃的高温,使TOC被氧化。高温燃烧法的缺点是氧化温度难以控制、背景值高,有空白污染、催化剂中毒产生记忆效应。2)二氧化钛或过硫酸盐氧化(湿法氧化):采用二氧化钛、重铬酸、过硫酸铵等不同的氧化剂来氧化有机碳。同时,需要加热加压,以增加氧化效率。湿法氧化不受水中物质的干扰。过硫酸盐氧化流程如图1所示。湿法氧化可分别测量总碳、总无机碳和总有机碳,而氧化法测定TOC只能直接测量总有机碳。该方法对于复杂的含碳样品如腐蚀酸、磺酸盐、高分子量化合物等仍不够。不适用于分析TOC含量高的样品。图 1. 过硫酸盐氧化流程图3)紫外线氧化法:使用185 nm和254 nm的UV灯照射待测水样,水会分解成羟基和氢基。羟基和和氧化物结合会生成CO2和水,然后检测新生成的CO2即可计算出总有机碳含量。紫外氧化流程图如图2所示。该方法采用无化学试剂,不会发生催化剂中毒,维护保养便捷。但是,对分子键结构紧密,不易被氧化的样品,会无法完全氧化。测量范围极小,一般测量的水样,要求TOC低于1.0 mg/L。该方法适用于半导体工业需求的超高纯净水和制药工业有限制标准的纯净水。图 2. 紫外氧化流程图4)紫外-过硫酸盐氧化(湿法氧化):该方法将紫外和湿法氧化法结合(如图3所示),使用185 nm及254 nm紫外波长的紫外灯来辅助消解氧化,同时加热、加压来提高各类氧化剂的氧化效率。图 3. 紫外-过硫酸盐氧化流程图5)超临界水氧化法:当温度和压力高于水的临界点(375℃及3200psi),有机废物迅速被水中的氧化剂彻底氧化。超临界水的特性均可以使有机碳极高效、快速地氧化成二氧化碳,即便存在使用非超临界氧化方式时会造成负干扰的氯化物及其他无机物也无妨。超临界水氧化法的优点在于氧化完全迅速,可以耐受高盐份化合物;缺点是不能检测低浓度的水样。6)臭氧氧化法:利用臭氧的氧化性,并加入双氧水辅助氧化。该方法反应迅速、无二次污染,但氧化能力不足。总有机碳分析仪的检测方式:根据总有机碳分析仪的二氧化碳检测方式有三种:非分散红外检测方法、选择性薄膜电导率检测方法和直接电导率检测方式。1)非分散红外检测(DIRN):该方法是根据朗波-比尔定律计算得到的二氧化碳的浓度。将有机物完全氧化的二氧化碳,通入检测室,利用二氧化碳的特征吸收光得到吸光度。TOC值可以通过差减法和直接法得到。A 差减法测定TOC值的方法原理水样分别被注入到高温燃烧管(900℃)和低温反应管(150℃)中。经高温燃烧管的水样受高温催化氧化,使有机化合物和无机碳酸盐均转化成二氧化碳。经反应管的水样受酸化而使无机碳酸盐分解成二氧化碳,其所生成的二氧化碳依次导入非分散红外检测器,从而分别测得水中的总碳(TC)和无机碳(IC)。总碳与无机碳之差值,即为总有机碳(TOC)。B 直接法测定TOC的方法原理将水样酸化后曝气,使各种碳酸盐分解生成二氧化碳而驱除后,再注入高温燃烧管中,可直接测定总有机碳。但由于在曝气过程中会造成水样中挥发性有机物的损失而产生测定误差,因此其测定结果只是不可吹出的有机碳值(NPOC)。在POC(Purgeable Organic Carbon)为零或很小的情况下,一般我们认为TOC=NPOC。2)直接电导率检测法:将样品氧化产生的CO2与0.001 M的NaOH电导液发生接触反应,生成碳酸钠。利用NaOH的电导率与Na2CO3的电导率相同,使用参比电极,通过计算转换,得到二氧化碳浓度。此方法系统简单,但测量范围小,选择性差,易被干扰。3)选择性薄膜电导率检测:将水样先进入紫外反应器,有机物被氧化生成CO2。水样离开紫外反应器后,进入二氧化碳交换模块。通过选择性渗透膜,去除二氧化碳,另一边检测舱仅仅能让含去离子水的样品通过,并开始均匀扩散。这一步交换反应,挡住了干扰化合物和氧化副产物,排除了来自非碳化合物与副产物的干扰。CO2在去离子水中发生电离反应,生成HCO3-和H+。CO2和离子的浓度增加直到薄膜两侧达到平衡。然后,阀门打开,CO2、HCO3-和H+进入电导率池,测定电导率和相应温度。二氧化碳的浓度通过电导率来表现。该方法可以避免杂质离子的影响,相比于直接电导率法,选择性薄膜电导率检测方法提供了更优异的选择性、稳定性、灵敏度和准确度。3 总有机碳分析仪结构与使用结构组成总有机碳分析仪一般由如图4所示部分组成:进样装置、反应装置(有机物氧化)、气液分离装置、二氧化碳检测装置和数据处理装置。图 4. 总有机碳分析仪组成模块总有机碳分析仪的仪器(图 5)的构造,最主要体现在有机物氧化方式和二氧化碳检测方式两个方面。应用于不同方面的仪器,设计也不尽相同。图 5. 总有机碳分析仪示意图典型的测定原理流程[1]:水样经八通阀自动进样器注入无机碳(IC)反应器,通过添加磷酸酸化,分解产生的CO2被高纯氮气吹除。消除IC组分后的样品与过硫酸钠氧化剂共同注入总碳(TC)反应器,在紫外灯(UV)和加热作用下,样品中的有机物被氧化,产生CO2。CO2被反应管中的载气喷射到电子除湿器进行冷却和脱水。经过冷却和脱水处理后的CO2气体通过卤素脱除器到达非色散红外检测器(NDIR)检测含量,并由仪器自动计算样品的TOC值。NDIR的模拟检测信号形成峰,由数据处理器测量峰的面积,峰面积与样品中TOC浓度成比例关系。因此,进行TC标准溶液分析,创建TOC浓度与峰面积关系的标准曲线,即可算出样品中TOC浓度。仪器使用1)配置标准溶液根据检测高含量(mg/L)及低含量(μg/L)级的各类工作原理的总有机碳分析仪,依据现行《总有机碳分析仪检定规程》(JJG821-2005)中的检定用标准物质——邻苯二甲酸氢钾水中有机碳标准溶液(GBW(E)080650)、碳酸钠水中无机碳标准溶液(GBW(E)080651)以及100 mg/L蔗糖标准溶液。以此为原液,根据实际需要,稀释成不同浓度的标准溶液。2)使用注意事项a)样品必须摇匀,微量分析时,摇动样品会使空气中CO2溶解进去,应小心操作。处理数据时,应减去空白值。b)根据仪器规定,确定适宜的进样量。一般进样量越大,曲线的峰越高。但过高的进样量会导致燃烧效率低下。如果浓度很高则要降低进样量。c)分析含盐量较高的样品时,应加脱盐装置,并可适当降低高温炉温度。d)反应器的材质是石英,在使用过程中它会与盐酸等发生反应,使其强度降低,在外力作用下迅速冷却时容易破裂。因此,建议在仪器使用过程中将气压控制在0.95~1.00 MPa之间,同时,关机时温度最好降到室温,最低也要温度降到100℃以下。4 应用范围全球环境变化备受关注的今天,大气层中的含碳气体的增加是引起全球环境变化的主要原因。因此,自然界中碳循环的研究成为研究环境问题的热点之一。TOC分析仪以其应用范围的广泛(包括固态样品如土壤、粉尘、湖泊沉积物等;液态样品包括污水废水、化学试剂等)、测试指标齐全(TC、TOC和IC)、测试范围广、流程简单、测试过程无二次污染产生等优点,被广泛用于碳元素的研究中。实例1:液态样品分析Yang et al.[2]在开展洪湖水体中磷元素动力学的研究中,采用0.45 μm膜过滤水样后,再使用TOC分析仪测定了水样中DOC(溶解性有机碳)浓度,用于洪湖水体的理化性质分析。表1总结了洪湖五个采样点的上覆水理化性质,包括水体温度、pH、溶解氧(DO)、溶解性有机碳(DOC)和Fe元素的浓度。其中HH1采样点的上覆水中DOC浓度最高,表明该采样点受农业活动和生活污水排放的影响高于其他采样点。表 1.洪湖上覆水的理化性质。实例2:固态样品分析高少鹏等[3]系统地讨论了TOC分析仪在测定湖泊沉积物中的TOC存在的问题,并给出了解决方案,实现了准确测定可湖泊沉积物中的TOC。在TC的测定过程中采用高温催化氧化法,所有的碳元素转换为CO2后进入非色散红外检测器(NDIR)测定。由于沉积物样品中含有碳酸盐,碳酸盐分解速率较有机碳燃烧速率较慢,因此大部分样品TC谱图会出现前后两个峰值。从图 6(a)发现,在仪器默认测定TC的炉温(900℃)下,无机碳的分解缓慢,造成峰拖尾。将炉温提升至950℃后,无峰拖尾现象,并显著缩短出峰时间(图 6(b))。这两个温度下测量结果没有差异,但提高炉温可以显著缩短出峰时间,提高测样效率。图 6.不同炉温下(a)900℃和(b)950℃总碳出峰情况对比。在测定IC的过程,与TC测定的原理不同,IC主要靠加酸反应。即样品能否与H3PO4充分反应将直接影响到IC的测量结果,最终影响TOC的测量精度。结果表明,IC样品测量前加水润湿可以显著提高反应效率。如图7所示,未加水润湿的样品峰型拖尾严重,加水润湿后再加酸测量,峰型明显改善。加水不宜过多,至样品刚好完全润湿为好。图 7.样品未加水润湿(a)和样品加水润湿(b)沉积物中无机碳测量效果对比。
大家好,我是搞科普的水侦探。水质检测有哪些常用的指标?TDS、TOC、COD这些常用的指标是什么意思?用什么方法可以检测出来?TDS能代表水样的质量吗?看完这篇文章您就知道了!俗话说病从口入,人体的疾病80%与水有关,多喝干净卫生的水有益健康长寿。那么如何判断饮用的水干不干净呢,还是需要用仪器检测的数据才能科学的体现出水的质量。我们国家2006年年底颁布的新版《生活饮用水卫生标准》,总共有106项水质指标,包括了微生物指标、毒理指标、感官性状和一般化学指标、放射性指标、消毒剂限值等等。但是这106项指标也太多了,我们作为普通消费者了解一些重要的指标就可以了,而在水质检测、给排水工程、水质净化等领域,经常需要用到的指标有:TDS、COD、TOC、BOD、TSS、TKN、TP、UV254、pH、VOCs、SDI、余氯、色度、浊度、臭氧等等指标,图中的生化需氧量BOD、总悬浮物TSS、凯氏氮TKN、总磷TP这些指标一般是污水处理厂和污水处理行业需要用到的指标,关于污水处理厂的工作流程,大家可以去我的主页看看以前的文章。水质检测常用指标我们平时生活中饮用的自来水,在出厂时都是符合《生活饮用水卫生标准》的,我在以前的文章里面,给大家介绍过自来水厂的净水流程,大家可以去我的主页,看看关于自来水厂净水流程的文章。而在家用自来水的净水领域,最常用的指标有TDS、COD、TOC这三个指标,下面我就来给大家分别介绍一下这三个指标的具体含义,还有检测方法。首先是TDS,TDS应该是被水质检测行业和家用净水器行业使用的最多的指标了,TDS全称是“溶解性总固体”,意思是水中溶解性固体总量,它表明1升水中溶有多少毫克溶解性固体,测量单位为毫克/升。TDS值越高,表明水中含有的溶解物越多。在测量水质的时候,一般是通过电导率来间接反映TDS值,一般情况下,电导率越高,盐份越高,TDS的数值越高。通常是使用TDS笔、TDS探针或者水质检测仪来检测水中的TDS数值。我们国家的《生活饮用水卫生标准》中对自来水的TDS要求是小于等于1000mg/L,但是我们实际生活中用的自来水很少有这么高的TDS数值,家用自来水的TDS数值一般在100-300mg/L,而使用RO反渗透净水器过滤出来的纯净水TDS数值甚至可以小于10,那为什么国家标准的TDS数值这么高呢?那是因为单纯的TDS数值和人的健康并没有直接的联系,TDS只能测出水中的可导电物质,但无法测出细菌、病毒、微生物等物质,因此不能将单纯的TDS数值作为判断水质好坏的标准。那我们再来看一下COD,COD的全称是“化学需氧量”,是指水中的还原性物质在外加的强氧化剂的作用下,被氧化分解时所消耗氧化剂的数量,这个指标反映的是测试的水样中需要被氧化的还原性物质的量,一般体现的是有机物、亚硝酸盐等物质的指标,COD的测量方法主要有重铬酸盐法、高锰酸钾法、分光光度法、快速消解法、快速消解分光光度法等等。重铬酸盐法的原理是在硫酸酸性介质中,用重铬酸钾作为氧化剂,硫酸银做催化剂,硫酸汞做为氯离子的掩蔽剂,加热沸腾以后,以硫酸亚铁铵溶液滴定剩余的重铬酸钾,根据硫酸亚铁铵溶液的消耗量计算水样的COD数值。因为这种测量方法用的氧化剂是重铬酸钾,所以称为重铬酸盐法。但是重铬酸盐法占用的实验空间大、化学试剂用量大,很难大批量快速测试。高锰酸钾法是用高锰酸钾作为氧化剂来测量COD数值,也就是被氧化分解时所消耗氧化剂的数量。分光光度法是用重铬酸盐法作为基础,通过氧化物的六价铬或三价铬的吸光度数值来测量COD数值。快速消解法是指在重铬酸盐法的基础上,提高消解反应体系中氧化剂浓度,或者增加硫酸酸度、提高反应温度、增加助催化剂等条件来提高反应速度的方法。快速消解分光光度法综合了上述各种方法的优点,是指采用密封管作为消解管,取小计量的水样和试剂于密封管中,放入小型恒温加热皿中,恒温加热消解,然后用分光光度法测定COD 数值。我们在测试COD数值时,COD的数值越高,就表示水样的有机物污染越严重,这些有机物污染的来源可能是农药、环境激素、化工厂、有机肥料等等有机物质,我们国家的自来水标准要求用高锰酸钾法测出的COD小于等于3mg/L,特殊情况下不超过5mg/L。我们最后说一下TOC,TOC的全称是“总有机碳”,主要用于评价水质有机污染的指标,TOC的测量方法非常多,有燃烧氧化-非分散红外吸收法、湿法氧化-非分散红外吸收法、紫外法等等十余种方法。燃烧氧化-非分散红外吸收法又分为差减法和直接法两种,差减法的原理是将一定体积的水样和氧气分别导入900度的高温燃烧管和150度的低温反应管中,高温燃烧管的水样在催化剂和氧气的作用下,有机化合物转化为二氧化碳;低温反应管的水样受酸化而使无机碳酸盐分解成二氧化碳。无机碳酸盐和有机化合物生成的二氧化碳依次进入非色散红外线检测器。由于一定波长的红外线被二氧化碳选择吸收,并在一定浓度范围内,二氧化碳对红外线吸收的强度与二氧化碳的浓度成正比,所以可以测量水样中的总碳TC和无机碳IC的数值,然后用总碳减去无机碳的差值,就是总有机碳TOC的数值了。而直接法的测试原理是将水样加酸,酸化为pH值小于2,通入氮气曝气,使无机碳酸盐转变为二氧化碳并被去除。再将水样注入高温燃烧管,便可直接测得总有机碳。湿法氧化-非分散红外吸收法的原理是在氧化之前用磷酸处理测试的水样,去除无机碳,然后测量TOC的浓度。紫外法的原理是水中一些有机物在254nm波长的紫外光下的吸光度和水中的有机碳数量呈线性关系,所以可以通过紫外线光谱的吸光度来测量总有机碳TOC的浓度,紫外法由于具有快速、不接触测量、重复性好等优点,这种测量方法在最近几十年得到快速发展。TOC的数值,能体现出水中的细菌、病毒、抗菌药物残留、化学农药残留等等有机物的数值,我们国家的自来水标准要求TOC小于等于5mg/L。现在科技发达,我们的生活水平也提高了,TDS、COD、TOC这三项指标现在使用家用的水质检测仪也可以检测出来,这都要感谢发现那些水质检测科学原理和发明水质检测仪的科学家们。好了,今天的分享就到这里,欢迎大家关注我们,我是搞科普的水侦探,我们下期再见!

我要回帖

更多关于 水中电导率与cod的关系 的文章

 

随机推荐