怎样证明哥德巴赫猜想?

瞒天过海:在地球online模拟器里将“哥德巴赫猜想”状态设置为“已证明”。围魏救赵:绑架所有数学家,声称如果他们不承认你证明了哥德巴赫猜想就枪毙他们。借刀杀人:声称谁证明了哥德巴赫猜想就给他五百万。以逸待劳:让所有数学家开始证明哥德巴赫猜想,并在有人取得成果之后剽窃他的成果。趁火打劫:绑架所有数学家,强迫他们证明哥德巴赫猜想,在证明成功之后放火趁机抢走证明过程。声东击西:一边声明自己不想证明哥德巴赫猜想,然后趁哥德巴赫猜想不注意直接把它证明了。无中生有:声称自己已经将哥德巴赫猜想证明过程发射到了太空中,只有智慧的人才能看得见。暗度陈仓:假装自己要从数学的角度证明哥德巴赫猜想,实则从其他角度证明。隔岸观火:笑里藏刀:李代桃僵:大喊一声“老师——!”顺手牵羊:趁着你去朋友家的时候顺走他的证明过程。打草惊蛇:借尸还魂:“现在我已经证明了100000以下的数都是满足哥德巴赫猜想了,100000以上的留给后人证明。”调虎离山:欲擒故纵:声称自己已经证明了哥德巴赫猜想,但是使用了现代人无法理解的数学工具,所以你的证明过程别人是看不懂的。抛砖引玉:到民科吧发帖:“我在证明哥德巴赫猜想,谁能指导一下”。擒贼擒王:直接证明所有数论猜想,就顺便证明了哥德巴赫猜想。釜底抽薪:把所有数学家都打成脑震荡,让他们无法意识到你的证明过程有误。混水摸鱼:在证明过程中,只要自己不知道下一步结论如何证明,就写“易证”。金蝉脱壳:关门捉贼:远交近攻:假途伐虢:偷梁换柱:将哥德巴赫猜想的1+1偷换概念为1+1=2,只需证明1+1=2即可。指桑骂槐:假痴不颠:上屋抽梯:树上开花:反客为主:“你已经是一个成熟的猜想了,要学会自己证明自己了。”美人计:空城计:声称自己证明成功了哥德巴赫猜想,然而提供的证明材料是一万张白纸。反间计:苦肉计:证明哥德巴赫猜想每用一分钟就抽自己一个大逼斗。连环计:使用以上的计策两条或以上。走为上计:发现自己无法证明哥德巴赫猜想,立刻跑。

展开全部哥德巴赫猜想的由来  1729年~1764年,哥德巴赫与欧拉保持了长达三十五年的书信往来。在1742年6月7日给欧拉的信中,哥德巴赫提出了一个命题。他写道:"我的问题是这样的:随便取某一个奇数,比如77,可以把它写成三个素数(就是质数)之和:77=53+17+7;再任取一个奇数,比如461,461=449+7+5,也是三个素数之和,461还可以写成257+199+5,仍然是三个素数之和。这样,我发现:任何大于5的奇数都是三个素数之和。但这怎样证明呢?虽然做过的每一次试验都得到了上述结果,但是不可能把所有的奇数都拿来检验,需要的是一般的证明,而不是个别的检验。"欧拉回信说:“这个命题看来是正确的”。但是他也给不出严格的证明。同时欧拉又提出了另一个命题:任何一个大于2的偶数都是两个素数之和,但是这个命题他也没能给予证明。不难看出,哥德巴赫的命题是欧拉命题的推论。事实上,任何一个大于5的奇数都可以写成如下形式:2N+1=3+2(N-1),其中2(N-1)≥4。若欧拉的命题成立,则偶数2N可以写成两个素数之和,于是奇数2N+1可以写成三个素数之和,从而,对于大于5的奇数,哥德巴赫的猜想成立。   但是哥德巴赫的命题成立并不能保证欧拉命题的成立。因而欧拉的命题比哥德巴赫的命题要求更高。   现在通常把这两个命题统称为哥德巴赫猜想。历史上的证明进展  1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被1和它本身整除的数)之和。如6=3+3,12=5+7等等。公元1742年6月7日哥德巴赫写信给当时的大数学家欧拉,欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。从哥德巴赫提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, ……等等。有人对3564以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但严格的数学证明尚待数学家的努力。   从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可即的"明珠"。 人们对哥德巴赫猜想难题的热情,历经两百多年而不衰。世界上许许多多的数学工作者,殚精竭虑,费尽心机,然而至今仍不得其解。哥德巴赫猜想的传奇实际上是科学史上最传奇的历史(详见百度哥德巴赫猜想传奇)。   到了20世纪20年代,才有人开始向它靠近。1920年挪威数学家布朗用一种古老的筛选法证明,得出了一个结论:每一个比5大偶数n(不小于6)的偶数都可以表示为九个质数的积加上九个质数的积,简称9+9。 需要说明的是,这个9不是确切的9,而是指1,2,3,4,5,6,7,8,9中可能出现的任何一个。又称为“殆素数”,意思是很像素数。与哥德巴赫猜想没有实质的联系。这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了哥德巴赫猜想。   目前最佳的结果是中国数学家陈景润于1966年证明的,称为陈氏定理:“任何充分大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积。”   在陈景润之前,关于偶数可表示为 s个质数的乘积 与t个质数的乘积之和(简称“s + t”问题)之进展情况如下:   1920年,挪威的布朗证明了“9 + 9”。   1924年,德国的拉特马赫证明了“7 + 7”。   1932年,英国的埃斯特曼证明了“6 + 6”。   1937年,意大利的蕾西先后证明了“5 + 7”, “4 + 9”, “3 + 15”和“2 + 366”。   1938年,苏联的布赫夕太勃证明了“5 + 5”。   1940年,苏联的布赫夕太勃证明了“4 + 4”。   1948年,匈牙利的瑞尼证明了“1+ c”,其中c是一很大的自然数。   1956年,中国的王元证明了“3 + 4”。   1957年,中国的王元先后证明了 “3 + 3”和“2 + 3”。   1962年,中国的潘承洞和苏联的巴尔巴恩证明了“1 + 5”, 中国的王元证明了“1 + 4”。   1965年,苏联的布赫 夕太勃和小维诺格拉多夫,及意大利的朋比利证明了“1 + 3 ”。   1966年,中国的陈景润证明了 “1 + 2 ”。(具体见:对陈景润的质疑)现状未获本质进展  “近20年来,哥德巴赫猜想的证明没有本质进展。”北京师范大学数学系教授、将在本届国际数学家大会上作45分钟报告的陈木法说,“它的证明就差最后一步。如果研究取得本质进展,那猜想也就最终获得了解决。” 据陈木法介绍,在2000年,国际上曾有机构列出了数学领域的7个千年难题,悬赏百万美元求解,但并未将哥德巴赫猜想包括在内。 “在最近几年甚至十几年内,哥德巴赫猜想还难以获得证明。”中科院数学与系统科学研究院研究员巩馥洲这样分析,现在猜想已成为一个孤立的问题,同其他数学学科的联系不太密切。同时,研究者也缺少有效的思想、方法来最终解决这一著名猜想。“陈景润先生生前已将现有的方法用到了极至。” 剑桥大学教授、菲尔茨奖得主贝克尔也表示,陈景润在这项工作上取得的进展是迄今为止最好的求证结果,目前还没有更大的突破。 “在解决这类数学难题时,可能一二百年内都难有进展,也可能短期内就有重大进展。”在巩馥洲看来,数学研究中存在一定的偶然性,也许可以让人们提前在猜想证明上获得进展。希望催生新的理论  关于哥德巴赫猜想的难度我就不想再说什么了,我要说一下为什么现代数学界对哥德巴赫猜想的兴趣不大,以及为什么中国有很多所谓的民间数学家对哥德巴赫猜想研究兴趣很大。   事实上,在1900年,伟大的数学家希尔伯特在世界数学家大会上作了一篇报告,提出了23个挑战性的问题。哥德巴赫猜想是第八个问题的一个子问题,这个问题还包含了黎曼猜想和孪生素数猜想。现代数学界中普遍认为最有价值的是广义黎曼猜想,若黎曼猜想能够成立,很多问题就都有了答案,而哥德巴赫猜想和孪生素数猜想相对来说比较孤立,若单纯的解决了这两个问题,对其他问题的解决意义不是很大。所以数学家倾向于在解决其它的更有价值的问题的同时,发现一些新的理论或新的工具,“顺便”解决哥德巴赫猜想。   为什么民间数学家们如此醉心于哥猜,而不关心黎曼猜想之类的更有意义的问题呢?一个重要的原因就是,黎曼猜想对于没有学过数学的人来说,想读明白是什么意思都很困难。而哥德巴赫猜想对于小学生来说都能读懂。   数学界普遍认为,这两个问题的难度不相上下。民间数学家解决哥德巴赫猜想大多是在用初等数学来解决问题,一般认为,初等数学无法解决哥德巴赫猜想。退一步讲,即使那天有一个牛人,在初等数学框架下解决了哥德巴赫猜想,有什么意义呢?已赞过已踩过你对这个回答的评价是?评论
收起',getTip:function(t,e){return t.renderTip(e.getAttribute(t.triangularSign),e.getAttribute("jubao"))},getILeft:function(t,e){return t.left+e.offsetWidth/2-e.tip.offsetWidth/2},getSHtml:function(t,e,n){return t.tpl.replace(/\{\{#href\}\}/g,e).replace(/\{\{#jubao\}\}/g,n)}},baobiao:{triangularSign:"data-baobiao",tpl:'{{#baobiao_text}}',getTip:function(t,e){return t.renderTip(e.getAttribute(t.triangularSign))},getILeft:function(t,e){return t.left-21},getSHtml:function(t,e,n){return t.tpl.replace(/\{\{#baobiao_text\}\}/g,e)}}};function l(t){return this.type=t.type
"defaultTip",this.objTip=u[this.type],this.containerId="c-tips-container",this.advertContainerClass=t.adSelector,this.triangularSign=this.objTip.triangularSign,this.delaySeconds=200,this.adventContainer="",this.triangulars=[],this.motherContainer=a("div"),this.oTipContainer=i(this.containerId),this.tip="",this.tpl=this.objTip.tpl,this.init()}l.prototype={constructor:l,arrInit:function(){for(var t=0;t0}});else{var t=window.document;n.prototype.THROTTLE_TIMEOUT=100,n.prototype.POLL_INTERVAL=null,n.prototype.USE_MUTATION_OBSERVER=!0,n.prototype.observe=function(t){if(!this._observationTargets.some((function(e){return e.element==t}))){if(!t
1!=t.nodeType)throw new Error("target must be an Element");this._registerInstance(),this._observationTargets.push({element:t,entry:null}),this._monitorIntersections(),this._checkForIntersections()}},n.prototype.unobserve=function(t){this._observationTargets=this._observationTargets.filter((function(e){return e.element!=t})),this._observationTargets.length
(this._unmonitorIntersections(),this._unregisterInstance())},n.prototype.disconnect=function(){this._observationTargets=[],this._unmonitorIntersections(),this._unregisterInstance()},n.prototype.takeRecords=function(){var t=this._queuedEntries.slice();return this._queuedEntries=[],t},n.prototype._initThresholds=function(t){var e=t
[0];return Array.isArray(e)
(e=[e]),e.sort().filter((function(t,e,n){if("number"!=typeof t
isNaN(t)
t1)throw new Error("threshold must be a number between 0 and 1 inclusively");return t!==n[e-1]}))},n.prototype._parseRootMargin=function(t){var e=(t
"0px").split(/\s+/).map((function(t){var e=/^(-?\d*\.?\d+)(px|%)$/.exec(t);if(!e)throw new Error("rootMargin must be specified in pixels or percent");return{value:parseFloat(e[1]),unit:e[2]}}));return e[1]=e[1]
e[0],e[2]=e[2]
e[0],e[3]=e[3]
e[1],e},n.prototype._monitorIntersections=function(){this._monitoringIntersections
(this._monitoringIntersections=!0,this.POLL_INTERVAL?this._monitoringInterval=setInterval(this._checkForIntersections,this.POLL_INTERVAL):(r(window,"resize",this._checkForIntersections,!0),r(t,"scroll",this._checkForIntersections,!0),this.USE_MUTATION_OBSERVER&&"MutationObserver"in window&&(this._domObserver=new MutationObserver(this._checkForIntersections),this._domObserver.observe(t,{attributes:!0,childList:!0,characterData:!0,subtree:!0}))))},n.prototype._unmonitorIntersections=function(){this._monitoringIntersections&&(this._monitoringIntersections=!1,clearInterval(this._monitoringInterval),this._monitoringInterval=null,i(window,"resize",this._checkForIntersections,!0),i(t,"scroll",this._checkForIntersections,!0),this._domObserver&&(this._domObserver.disconnect(),this._domObserver=null))},n.prototype._checkForIntersections=function(){var t=this._rootIsInDom(),n=t?this._getRootRect():{top:0,bottom:0,left:0,right:0,width:0,height:0};this._observationTargets.forEach((function(r){var i=r.element,a=o(i),c=this._rootContainsTarget(i),s=r.entry,u=t&&c&&this._computeTargetAndRootIntersection(i,n),l=r.entry=new e({time:window.performance&&performance.now&&performance.now(),target:i,boundingClientRect:a,rootBounds:n,intersectionRect:u});s?t&&c?this._hasCrossedThreshold(s,l)&&this._queuedEntries.push(l):s&&s.isIntersecting&&this._queuedEntries.push(l):this._queuedEntries.push(l)}),this),this._queuedEntries.length&&this._callback(this.takeRecords(),this)},n.prototype._computeTargetAndRootIntersection=function(e,n){if("none"!=window.getComputedStyle(e).display){for(var r,i,a,s,u,l,f,h,p=o(e),d=c(e),v=!1;!v;){var g=null,m=1==d.nodeType?window.getComputedStyle(d):{};if("none"==m.display)return;if(d==this.root
d==t?(v=!0,g=n):d!=t.body&&d!=t.documentElement&&"visible"!=m.overflow&&(g=o(d)),g&&(r=g,i=p,a=void 0,s=void 0,u=void 0,l=void 0,f=void 0,h=void 0,a=Math.max(r.top,i.top),s=Math.min(r.bottom,i.bottom),u=Math.max(r.left,i.left),l=Math.min(r.right,i.right),h=s-a,!(p=(f=l-u)>=0&&h>=0&&{top:a,bottom:s,left:u,right:l,width:f,height:h})))break;d=c(d)}return p}},n.prototype._getRootRect=function(){var e;if(this.root)e=o(this.root);else{var n=t.documentElement,r=t.body;e={top:0,left:0,right:n.clientWidth
r.clientWidth,width:n.clientWidth
r.clientWidth,bottom:n.clientHeight
r.clientHeight,height:n.clientHeight
r.clientHeight}}return this._expandRectByRootMargin(e)},n.prototype._expandRectByRootMargin=function(t){var e=this._rootMarginValues.map((function(e,n){return"px"==e.unit?e.value:e.value*(n%2?t.width:t.height)/100})),n={top:t.top-e[0],right:t.right+e[1],bottom:t.bottom+e[2],left:t.left-e[3]};return n.width=n.right-n.left,n.height=n.bottom-n.top,n},n.prototype._hasCrossedThreshold=function(t,e){var n=t&&t.isIntersecting?t.intersectionRatio
0:-1,r=e.isIntersecting?e.intersectionRatio
0:-1;if(n!==r)for(var i=0;i0&&function(t,e,n,r){var i=document.getElementsByClassName(t);if(i.length>0)for(var o=0;o展开全部
(二)、哥德巴赫猜想的证明 哥德巴赫猜想:大于6的偶数可以表示为两个奇素数之和。1、偶数的拆分与合数删除因为:大于或等于6的偶数都能够被2整除,我们令大于6的偶数为M,那么,M/2只有两种结果,或者为奇数,或者为偶数。不管M/2为奇数,还是偶数。都有:①、M必然等于M/2+M/2,② 、M必然等于M/2+1,2,3,4,5,……(M/2-1)加上M/2-1,2,3,4,5,……(M/2-1)之和。或者说M=M/2±1,2,3,4,5,……(M/2-1)。举例说明吧:偶数32,32=16+16=17+15=18+14=19+13==20+12=21+11=22+10=23+9=24+8=25+7=26+6=27+5=28+4=29+3=30+2。我们把这里的加数与被加数分成两个相互对应的数列为:16,17,18,19,20,21,22,23,24,25,26,27,28,29,3016,15,14,13,12,11,10,09,08,07,06,05,04,03,02我们从这个加数数列与偶数数列,可以看出以下三点:(1)、不论是加数数列,还是偶数数列,都是相差1的等差数列,相差数不是素数2、3、5的倍数,那么,素数2、3、5对这两个数列必然要进行删除后,剩余的才是适应偶数32的素数对。素数2的删除为:每两个数删除一个,并且只删除一个;素数3的删除为:素数2删除后的剩余数,每三个删除一个,并且只删除一个;……。虽然后面的删除数在这里看不出来,请看我写的《素数的综合计算方法》和《解除三大误区创建三个参数》,从大的方面和总体的方面,大素数的删除仍然遵循这一规律。(2)、因为:偶数32能够被素数2整除,所以,素数2对加数数列的删除与对被加数数列的删除,是完全对应的。即素数2删除后,剩余所有适应偶数32的加数对为1/2,即删除了偶数对,剩余了奇数对。严格地说为(M-2)/4取整数;因为,偶数32不能够被素数3整除,所以,素数3必须对(素数2删除后的)加数数列删除1/3,素数3必须对(素数2删除后的)被加数数列删除1/3,它们的删除是完全不对应的,素数3合计删除奇数对的2/3,剩余奇数对的1/3;……。虽然后面的删除数在这里看不出来,仍然是:从大的方面和总体的方面,大素数的删除仍然遵循这一规律。(3)、我们再看删除因子:从偶数32来说删除因子为√32以下的素数,应该为5及5以下的素数,从这里我们可以看出,如果加数为√32以下的素数,那么,被加数就只能为√16以下的素数,即小于素数3以下的素数为删除因子。当然,在这里是不很明显,对于大偶数来说是比较明显的。(4)、另外一方面,在这里是看不出来。如果说,您进行实际操作就会知道:任意设两个素数删除因子为A、B。那么,素数删除因子A的删除间隔,必然不是素数删除因子B的倍数,反过来说,素数删除因子B的删除间隔,也必然不是素数删除因子A的倍数,如果素数删除因子A对加数数列进行删除,素数删除因子B对被加数数列进行删除,素数A删除B个删除数中,必然有一个删除奇数对与素数B的删除奇数对为同一个奇数对,反过来,素数B删除A个删除数中,必然有一个删除奇数对与素数A的删除奇数对为同一个奇数对。说到这里,强调一点:“哥德巴赫猜想”是大于6的偶数可以表示为两个奇素数之和,也正是大于6的偶数可以被最小的素数2整除,素数2对组成偶数的加数与被加数的删除是完全对应的,删除了组成偶数1/2的偶数对,剩余了1/2的奇数对,才有266年的哥猜之说。如果,偶数不能够被素数2整除,素数2对组成偶数的加数数列与被加数数列的删除数,不相对应,就没有剩余奇数对,也就没有哥猜之说了!再看偶数42,42=21+21,22+20,23+19,24+18,25+17,26+16,27+15,28+14,29+13,30+12,31+11,32+10,33+9,34+8,35+7,36+6,37+5,38+4,39+3,40+2。我们把这里的加数与被加数分成两个相互对应的数列为:21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,4021,20,19,18,17,16,15,14,13,12,11,10,09,08,07,06,05,04,03,02。从这里也可以看出:偶数42可以被素数2、3、7整除,素数删除因子2、3、7对组成42的加数数列与被加数数列的删除是完全对应的;偶数42不能够被素数删除因子5整除,素数删除因子对组成42的加数数列与被加数数列的删除,是完全不对应的,即对加数数列必须删除1/5,对被加数数列必须删除1/5,合计算删除2/5。这就是“哥德巴赫猜想”删除规律。2、偶数与素数删除因子删除后的剩余奇数的关系其实,大于6的偶数,可以分解为三种类型:6X,6X+2,6X+4。这里的X为:X≥1的自然数。 素数2、3删除后的剩余奇素数,也可以分为三种类型:3,6N+1,6N+5。这里的N为:N≥1的奇数。这里的1和5为小于6,且不能够被组成合数6的素数因子2和3整除,下同。 当偶数为6X时,即偶数能够被素数3整除,该种类型的偶数可以表示为:6X=(6N+1)+(6N+5)。 当偶数为6X+2时,即偶数不能够被素数3整除,该种类型的偶数可以表示为:6X+2=(6N+1)+(6N+1)或者(6N+5)+3。 当偶数为6X+4时,即偶数不能够被素数3整除,该种类型的偶数可以表示为:6X+4=(6N+5)+(6N+5)或者(6N+1)+3。 上面式子中的(6N+1)+3和(6N+5)+3,意思是说:当偶数不能被素数3整除时,偶数-3一定不能够被素数3整除,如果偶数-3不能够被其它删除因子整除,那么,(偶数-3)+3,必然为适应该偶数的素数对。 ∵:(6N+1),(6N+5),式子中的N都是取自然数。(6N+1)中的N≠0。∴:(6N+1),(6N+5)的值都是奇数。不能被素数2整除,同时都不能被素数3整除。 故,任何大于6的偶数分解为:(6N+1)+(6N+5);(6N+1)+(6N+1);(6N+5)+(6N+5)时,只要这些加数与被加数,都不能被≥5的素数删除因子删除,那么,没有被大素数删除因子删除的加数与被加数所组成的奇数对,就是适应该偶数(1+1)的“哥德巴赫猜想”的解。 如何确定≥6的偶数为哪种类型的偶数呢?如果偶数能够被6整除,为6X型;如果偶数-2能够被6整除,为6X+2型;如果偶数-4能够被6整除,为6X+4型。 (1)、任意偶数的奇数对,即:素数2删除偶数对后,自然数中剩余的都是奇数,能够表示为自然数之和等于该偶数的为奇数对。设任意偶数为M,因自然数1不是素数,故任意偶数的奇数对为:(M-2)/4;(2)、素数2、3删除后的剩余奇数对为:当偶数能够被素数 3整除时,即6X型,每三个奇数对必然剩余两个奇数对,为(M-2)/4*2/3=(M-2)/6,举例说明:如偶数96能够被3整除,为6X型,(96-2)/6≈15,为15个奇数对。实际为5+91,11+85,17+79,23+73,29+67,35+61,41+55,47+49,53+43,59+37,65+31,71+25,77+19,83+13,89+7,共15个奇数对。组成奇数对的加数和被加数与(6N+1)+(6N+5)的搭配相稳合。 如果偶数M不能被素数3整除,那么,素数2和3删除后的剩余奇数为:每三对奇数剩余一对奇数,即:(M-2)/4*1/3=(M-2)/12。举例说明:偶数56为6X+2型,(56-2)/12≈4,实际为7+49,13+43,19+37,25+31共4个奇数对,组成奇数对的加数和被加数与(6N+1)+(6N+1)的搭配相稳合。 偶数64为6X+4型。(64-2)/12≈5,即5对,实际为5+59,11+53,17+47,23+41,29+35共5对,组成奇数对的加数和被加数与(6N+5)+(6N+5)的搭配相稳合。(素数2、3、5删除后的剩余奇数与偶数之间的关系,略。详见《解除三大误区创建三个参数》中的素数对参数表及计算方法)。 那么,怎样计算这些素数2、3删除的剩余奇数对,如何被≥5的素数删除因子册除呢? 从上面这些加数与被加数看,不论是加数与加数之间,还是被加数与被加数之间,都是间隔距离相差6的连续数,根据素数删除规律,设素数删除因子为N,如果偶数不能够被素数删除因子N整除,且N≥5,因为,这些连续奇数的间隔都不是≥5的素数删除因子的倍数,应该是N个连续奇数中,必然有一个奇数是素数N的倍数的数,即必然被素数删除因子N删除一个数,并且只有这样一个N的倍数的数字为删除数。对于加数来说,素数N应该删除1/N个,对于被加数来说素数N应该删除1/N个,都必然只删除1/N个,合计应该删除2/N,必然剩余(N-2)/N为剩余奇数对。如果偶数能够被素数删除因子N整除,那么,素数删除因子对组成偶数奇数对的加数与被加数的删除是完全对应的,素数删除因子N只能删除偶数奇数对的1/N对。因此,我们把不能够被所有奇素数删除因子整除的偶数称为最低素数对偶数。下面,我们就计算最低素数对偶数的素数对:则有:设任意偶数为M,设√M≈N,删除因子为:2,3,5,7,11,…N, 当偶数不能被所有奇素数删除因子整除时,素数对≥(M-2)/4*1/3*3/5*5/7*9/11*……(N-2)/N。我们把这个式子,叫做最低素数对偶数表达式或者说叫素数对下界公式。 为什么说,上面式子中≥成立呢?大于是因为,我们在这个式子的计算中,都是按不论是加数还是被加数,只要删除其中的一个数,即删除一个奇数对的计算方法。在这个式子中没有排除不同的素数删除因子,共同删除一个奇数对的事实。如果排除,实际删除的就还要少,剩余的就还要多。所以,这里的≥成立。至于,同一素数删除因子删除一个奇数对的加数和被加数的现象等,后面再说。 根据乘法规律,任何数字乘以小于1的数,数值变小,设合数为Z,则(Z-2)/Z<1,我们将小于最大删除因子N的奇合数空缺,代入(Z-2)/Z,则当偶数不能被6整除时,素数对≥(M-2)/4*1/3*3/5*5/7*9/11*……(N-2)/N>(M-2)/4*1/3*3/5*5/7*7/9*9/11*11/13*13/15*15/17……(N-2)/N=(M-2)/4N, ∵:只有当M>N*N+3时,(因为1不是素数,我们在计算奇数对时就排除了偶数的两个自然数),故,N才对偶数M发挥删除作用。M-2≥N*N+3,其实,对于大偶数来说,也不在乎2个自然数的差距(我们在取素数删除因子时,往往远远超过偶数的两个自然数的关系)。我们将M-2换成N*N,代入上式,有偶数的最低素数对≥(M-2)/4N≈N*N/4N=N/4。 即:偶数的最低素数对≥N/4,N为偶数的最大删除因子。 当然,N也可以为偶数平方根取最大的整数。同一素数删除因子在删除一个奇数对的加数数列和被加数数列时。从上面的偶数96可以看出:96能够被6整除,也就是能被素数3整除,那么,素数3对于(M-2)/4的奇数对的删除中,对于奇数对的加数数列与被加数数列的删除,是完全对应的。所以,素数3对于奇数对的删除为:每三个奇数对只能删除一个奇数对,必须剩余两个奇数对。假设我们将能够被素数3整除的偶数,按照不能被素数3整除的偶数(最低素数对偶数)进行计算,那么,就多删除了1/3。 如果我们认定不能被任何奇素数整除的偶数的素数对的计算,为最低素数对的计算方法。那么,能够被素数3整除的偶数就应该为最低素数对除以2/3后乘以1/3,我们设偶数能够被素数删除因子整除的删除因子为L,即最低素数对除以(L-1)/L后乘以(L-2)/L,即最低素数对乘以(L-1)/(L-2)。我们知道偶数最低素数对≥N/4,如:偶数能够被素数3整除,素数对则≥N/4*(3-1)/(3-2)=N/2;又如:偶数能够被素数删除因子5整除,素数对≥N/4*(5-1)/(5-2)=N/3,能够被其它删除因子整除的,照猫画虎;能够被多个素数删除因子整除的,应该同时这样进行计算。这就是人们所看见的相邻不同的偶数,素数对的多少参差不齐的原因所在。是因为,偶数的大小虽然相邻,但能被那些删除因子整除,并不相同。 从上面的计算:当偶数不能被所有素数删除因子整除时,素数对≥N/4。当N/4≥1时,必然有素数对,也就是最大的删除因子大于4,也就是偶数≥16时,必然有素数对。素数删除因子N>4,即N≥5,素数删除因子N≥5,偶数必须>25,是因为√25=5。在实际验算中,这种偶数≥16时,不能被素数删除因子3整除的偶数,就有(6N+1)+(6N+1)或(6N+5)+(6N+5)素数对的存在。如:16=5+11,20=7+13。设偶数为M,当M≥16时,√M≥4,偶数M的素数对≥1,“哥德巴赫猜想”成立。再从能够被素数3整除的偶数,素数对≥N/2看,因为2不是奇素数,故当N≥3时,偶数必须>9,是因为√9=3,当偶数为12时有,5+7,偶数为18时有,7+11,5+13,都是(6N+1)+(6N+5)的素数对。设偶数为M,当M≥12时,√M>2,偶数M的素数对≥1,“哥德巴赫猜想”成立。 ∵:当任意偶数≥16时,√M>4,即N>4,N/4>1,必然有(1+1)的素数对,同时,我们知道当偶数≥6至14时,也有(1+1)的素数对。 ∴:哥德巴赫猜想是成立的。 说明:这种计算方法的缺陷如下:1、在对大偶数的计算中,如果说,我们仍然按照偶数平方根以下的素数为删除因子,对组成偶数奇数对的加数数列与被加数数列进行删除计算的话,那么,偶数越大,素数对的误差越大。是因为,我们设偶数为M,组成偶数的加数数列与被加数数列,必然有一个数列的数字小于M/2,这个数列的实际删除因子只为 √(M/2)以内的素数,我们同样用√M以内的素数进行计算,就将不该删除的进行了删除。所以,我们在进行大偶数的计算时,还可以在上面的最低素数对的基础上,针对所有多余删除的素数因子N(即,大于√(M/2),小于√M之间的素数),上面是通乘以(N-2)/N作为素数N对奇数对加数数列和被加数数列的删除,实际上,对于这一段的素数N只能删除加数数列与被加数数列的一个数列,即多乘以了(N-1)/N。更正,对这些素数删除因子N,在上面得数的基础上,乘以N/(N-1),为该偶数的素数对;2、从计算出最低素数对得数为N/4时,我们增加了不该增加的合数删除因子。为什么说不该增加,是因为:合数倍数的数虽然是删除数,但是,合数倍数的数是由组成合数的素数删除因子删除了的,而不应该增加合数删除因子。所以,我们在上面所计算出和得数的基础上,应该对所增加的合数删除因子N,在上面的计算中增加了乘以(N-2)/N,在这里进行更正的话,应该用上面的得数除以(N-2)/N或者乘以N/(N-2);3、对于大偶数,存在多个素数删除因子,对组成偶数的加数数列与被加数数列的同时删除,不同的素数删除同一个加数与被加数时,在上面的计算中,我们示为删除了两个奇数对,但,实际上只删除了一个奇数对,所以,上面的这种计算方法存在:计算数小于实际素数对的现象;4、我们在上面的计算中,是按照每一个素数删除因子的删除单独进行计算的,这种计算方法对于小偶数来说,由于这种现象不存在,对于大偶数来说:由于偶数的增大,组成奇数对的奇数也随着增大,因为,任何合数都是两个或两个以上素数的乘积,多个素数对同一个合数的删除,我们并没有进行分开,示为这多个素数删除因子删除了多个奇数,也就是删除了多个奇数对,所以,大偶数的实际素数对大于这里所计算的素数对。
展开全部1+1:哥德巴赫猜想
收起
更多回答(1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:
下载百度知道APP,抢鲜体验使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。扫描二维码下载
×个人、企业类侵权投诉
违法有害信息,请在下方选择后提交
类别色情低俗
涉嫌违法犯罪
时政信息不实
垃圾广告
低质灌水
我们会通过消息、邮箱等方式尽快将举报结果通知您。说明
做任务开宝箱累计完成0
个任务
10任务
50任务
100任务
200任务
任务列表加载中...

提交成功是否继续回答问题?
手机回答更方便,互动更有趣,下载APP
展开全部回答:一、证明方法 设N为任一大于6的偶数,Gn为不大于N/2的正整数,则有: N=(N-Gn)+Gn(1) 如果N-Gn和Gn同时不能被不大于√N的所有质数整除,则N-Gn和Gn同时为奇质数。设Gp(N)表示N-Gp和Gp同时为奇质数的奇质数Gp的个数,那么,只要证明: 当N>M时,有Gp(N)>1,则哥德巴赫猜想当N>M时成立。 二、双数筛法 设Gn为1到N/2的自然数,Pi为不大于√N的奇质数,则Gn所对应的自然数的总个数为N/2。如N-Gn和Gn这两个数中任一个数被奇质数Pi整除,则筛去该Gn所对应的自然数,由此,被奇质数Pi筛去的Gn所对应的自然数的个数不大于INT(N/Pi),则剩下的Gn所对应的自然数的个数不小于N/2-INT(N/Pi),与Gn所对应的自然数的总个数之比为R(Pi): R(Pi)≥(N/2-INT(N/Pi))/(N/2)≥(1-2/Pi)×INT((N/2)/Pi)/((N/2)/Pi)(2) 三、估计公式 由于所有质数都是互质的,可应用集合论中独立事件的交积公式,由公式(2)可得任一偶数表为两个奇质数之和的表法的数量的估计公式: Gp(N)≥(N/4-1)×∏R(Pi)-1≥(N/4-1)×∏(1-2/Pi)×∏(1-2Pi/N)-1(3) 式中∏R(Pi)表示所有不大于√N的奇质数所对应的比值计算式的连乘。 四、简单证明 当偶数N≥10000时,由公式(3)可得: Gp(N)≥(N/2-2-∑Pi)×(1-1/2)×∏(1-2/Pi)-1 ≥(N-2×√N)/8×(1/√N)-1=(√N-2)/8-1≥11>1(4) 公式(4)表明:每一个大于10000的偶数表为两个奇质数之和至少有11种表法。 经验证明:每一个大于4且不大于10000的偶数都可表为两个奇质数之和。 最后结论:每一个大于4的偶数都可表为两个奇质数之和。 (一九八六年十二月二十四日) 哥德巴赫猜想是世界近代三大数学难题之一。1742年,由德国中学教师哥德巴赫在教学中首先发现的。 1742年6月7日哥德巴赫写信给当时的大数学家欧拉,正式提出了以下的猜想:a.任何一个大于6的偶数都可以表示成两个素数之和。b.任何一个大于9的奇数都可以表示成三个素数之和。 这就是哥德巴赫猜想。欧拉在回信中说,他相信这个猜想是正确的,但他不能证明。 从此,这道数学难题引起了几乎所有数学家的注意。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。 中国数学家陈景润于1966年证明:任何充份大的偶数都是一个质数与一个自然数之和,而后者可表示为两个质数的乘积。”通常这个结果表示为1+2。这是目前这个问题的最佳结果。 要想看懂陈景润的严格证明,恐怕多数没有数论基础的朋友根本做不到。 给一个最简单的简述: 1941年,P.库恩(Kuhn)提出了加权筛法,这种方法可以加强其他筛法的效果.当今有关筛法的许多重要结果都与这一思想有关. 陈景润对孔恩的“加权筛法”作了转换原理的改进,对下界估计推进到(1+2)已是极限,到此“‘圆法’与‘筛法’均已山穷水尽,用它们几乎不可能证明猜想(1+1)的。已赞过已踩过你对这个回答的评价是?评论
收起推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
下载百度知道APP,抢鲜体验使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。扫描二维码下载
×个人、企业类侵权投诉
违法有害信息,请在下方选择后提交
类别色情低俗
涉嫌违法犯罪
时政信息不实
垃圾广告
低质灌水
我们会通过消息、邮箱等方式尽快将举报结果通知您。说明
做任务开宝箱累计完成0
个任务
10任务
50任务
100任务
200任务
任务列表加载中...

我要回帖

更多关于 如果有人证明了哥德巴赫猜想 的文章

 

随机推荐