何谓光反射密度和光谱反射密度?如何计算?

光谱仪是一种常用的光学仪器,可以将复杂的光分解为光谱线,具有性能稳定、使用安全可靠、维护简便等优点。光谱仪的定性分析方法用户都知道吗?下面小编就来具体介绍一下,希望可以帮助用户更好的应用产品。 光谱仪器的定性分析是指由于各种元素的原子结构不同,在光源的作用下都可以产生自己特征的光谱。如果一个样品经过激发摄谱在感光板上有几种元素的光谱出现,就证明这个样品有几种元素。这就是所谓的光谱定性分析方法,下面具体介绍一下光谱仪的定性分析方法吧。 1.比较光谱分析法:这种方法应用比较广泛,它包括标准试样比较法和铁谱比较法。标准样品比较法一般适用于单项定性分析及有限分析。铁谱比较法它不但可以做单项测定还便于做全分析。 2.谱线波长测量法:光谱分析仪器利用谱线波长测量法进行定性分析是先测出某一谱线的波长,再查表确定存在的元素,这种方法在日常分析......

  X射线荧光光谱仪具有重现性好,测量速度快,灵敏度高的特点。能分析B(5)~U(92)之间元素。样品可以是固体、粉末、熔融片,液体等,分析对象适用于炼钢、有色金属、水泥、陶瓷、石油、玻璃等行业样品。无标半定量方法可以对各种形状样品定性分析,并能给出半定量结果,结果准确度对某些样品可以接近定量水平,

原子发射光谱(ICP/AES)理论知识(10)——定性分析  光谱定性分析  光谱定性分析的原理  由于各种元素原子结构的不同,在光源的激发作用下,可以产生一系列特征的光谱线,其波长λ是由产生跃迁的两能级的能量差决定的。   ΔE=hν=hC/λ  因此,根据原子光谱中的元素特征谱线就可以确定试样中

  原子发射光谱(ICP/AES)理论知识(10)——定性分析  光谱定性分析  光谱定性分析的原理  由于各种元素原子结构的不同,在光源的激发作用下,可以产生一系列特征的光谱线,其波长λ是由产生跃迁的两能级的能量差决定的。   ΔE=hν=hC/λ  因此,根据原子光谱中的元素特征谱线就可以确定试

   当代红外光谱仪的发展已使红外光谱的意义远远超越了对样品进行简单的常规测试并从而推断化合物的组成的阶段。红外光谱仪与其它多种测试手段联用衍生出许多新的分子光谱领域,例如,色谱技术与红外光谱仪联合为深化认识复杂的混合物体系中各种组份的化学结构创造了机会;把红外光谱仪与显微镜方法结合起来,

红外光 近红外光谱仪(Near Infrared Spectrum Instrument,NIRS)是介于可见光(Vis)和中红外(MIR)之间的电磁辐射波,美国材料检测协会(ASTM)将近红外光谱区定义为780-2526nm的区域,是人们在吸收光谱中发现的第一个非可见光区。近红外光谱区与

国内外光电直读光谱仪的发展    光谱起源于17世纪,1666年物理学家牛顿第一次进行了光的色散实验。他在暗室中引入一束太阳光,让它通过棱镜,在棱镜后面的自屏上,看到了红、橙、黄、绿、兰、靛、紫七种颜色的光分散在不同位置上——即形成一道彩虹。这种现象叫作光谱.

光谱起源于17世纪,1666年物理学家牛顿*次进行了光的色散实验。他在暗室中引入一束太阳光,让它通过棱镜,在棱镜后面的自屏上,看到了红、橙、黄、绿、兰、靛、紫七种颜色的光分散在不同位置上——即形成一道彩虹。这种现象叫作光谱.这个实验就是光谱的起源,自牛顿以后,一直没有引起人们的注意。到1802年英国

IRIS/ICP光谱仪使用经验交流    中国科学院物理研究所 施洪钧老师   中国科学院物理研究所的施洪钧老师做了题为《IRIS/ICP光谱仪使用经验交流》的报告。1994年中国科学院物理研究所引进了国内第一台IRIS系列全谱直读等离子体光谱仪,2005年又引进第四代

21.X荧光光谱热电的仪器,检测口放一铜片的作用? (1) 有的手持式的在头部装有一个校正的样品,同时在不用的时候也可以保护X射线发射源。 (2) 铜块作用一是作能量校正,二是在不测其它样品时挡住窗口起保护作用。  22.为什么X射线荧光测定压片样中的Sb含量时样片厚度

X荧光光谱仪是根据X射线荧光光谱的分析方法配置的多通道X射线荧光光谱仪,它能够分析固体或粉状样品中各种元素的成分含量。         X射线荧光(XRF)能够测定周期表中多达83个元素所组成的各种形式和性质的导体或非导体固体材料,其中典型的样品有玻

 X荧光光谱仪是根据X射线荧光光谱的分析方法配置的多通道X射线荧光光谱仪,它能够分析固体或粉状样品中各种元素的成分含量。  X射线荧光(XRF)能够测定周期表中多达83个元素所组成的各种形式和性质的导体或非导体固体材料,其中典型的样品有玻璃、塑料、金属、矿石、耐火材料、水泥和地质物料等。凡

X荧光光谱仪是根据X射线荧光光谱分析方法配置的多通道X射线荧光光谱仪,能够分析固体或粉状样品中各种元素的成分含量,具有灵敏度高、精密度好、性能稳定、分析速度快等特点。 X荧光光谱仪的原理: X射线管通过产生入射X射线(一次X射线),来激发被测样品。 受激发的样品中的每一种元素会放

合成高分子材料广泛地应用于食品、汽车和包装材料等行业,其制造过程中需要对原材料进行识别验证和质量测试,以保证产品的品质。本文介绍了中红外光谱在鉴别高分子材料方面的应用。 当前,合成高分子材料广泛地应用于食品、汽车和包装材料等行业。塑料产品的质量取决于制造过程中使用的高分子或高分子混合

CP光谱法是上世纪60年代提出、70年代迅速发展起来的一种分析方法,它的迅速发展和广泛应用是与其克服了经典光源和原子化器的局限性分不开的,与经典光谱法相比它具有如下优点:   1. 因为ICP光源具有良好的原子化、激发和电离能力,所以它具有很好的检出限。对于多数元素,其检出限一般为0.1~

光谱起源于17世纪,1666年物理学家Newton第一次进行了光的色散实验。他在暗室中引入一束太阳光,让它通过棱镜,在棱镜后面的白屏上,看到了红、橙、黄、绿、蓝、靛、紫7种颜色的光分散在不同位置上,这种现象被称作光谱。到1802年英国化学家Wollaston发现太阳光谱不是一道完美无缺的彩虹,而是被

近红外光谱技术(Near Infrared,  NIR)是一种近年来才发展起来的新型分析技术,它综合运用了计算机技术、光谱技术和化学计量学等多个学科的最新研究成果,以其独特的优势在多个领域得到了日益广泛的应用。并已逐渐得到大众的普遍接受和官方的认可。近红外光谱技术相对于其它各类普遍应用的光

  原子吸收光谱(Atomic Absorption Spectrometry, AAS)  根据蒸气相中被测元素的基态原子对其原子共振辐射的吸收强度来测定试样中被测元素的含量;适合对纳米材料中痕量金属杂质离子进行定量测定,检测限低 ,ng/cm3,10-10—10-14g;测量准确度很高,1%(3

  原子吸收光谱(Atomic Absorption Spectrometry, AAS)  根据蒸气相中被测元素的基态原子对其原子共振辐射的吸收强度来测定试样中被测元素的含量;适合对纳米材料中痕量金属杂质离子进行定量测定,检测限低 ,ng/cm3,10-10—10-14g;测量准确度很高,1%(3

X射线荧光光谱仪具有重现性好,测量速度快,灵敏度高的特点,分为波长色散、能量色散、非色散X荧光、全反射X荧光。分析对象适用于炼钢、有色金属、水泥、陶瓷、石油、玻璃等行业样品。X射线荧光光谱法有如下特点: 分析的元素范围广,从4Be到92U均可测定;荧光X射线谱线简单,相互干扰少,样品不必分

一、 实验目的 1.了解荧光光谱仪的基本构造和各组成部分的作用 2.了解荧光光谱仪的工作原理 3.掌握激发光谱、发射光谱的测定方法。 二、 实验原理 原子外层电子吸收光子后,由基态跃迁到激发态,再回到较低能级或者基态时,发射出一定波长的辐射,称为荧光。 (1)

  一.X射线荧光分析仪简介  X射线荧光分析仪是一种比较新型的可以对多元素进行快速同事测定的仪器。在X射线激发下,被测元素原子的内层电子发生能级跃迁而发出次级X射线(X-荧光)。波长和能量是从不同的角度来观察描述X射线所采用的两个物理量。波长色散型X射线荧光光谱仪(WD-XRF)。是用晶

  过硫酸氢钾复合盐在国内水产业中推行也有近十年的时间,但是国标一直未形成。在发展初期就直接出现了劣币驱逐良币的现象,甚至到现在,有些大厂为了满足一部分养殖户低价的需求,也在随波逐流的采购一些含量极低甚至不含过硫的原料,这对过硫酸氢钾复合盐的发展是极为不利的,也是对水产养殖业的一种伤害。      

  一、液—质联用法(LC-MS)或气-质联用(GC-MS)法   (一)方法简介  液—质联用法(LC-MS)是指利用液相色谱法与质谱法共同分析样品;  气-质联用(GC-MS)法是指利用气相色谱法与质谱法共同分析样品;  这两种检测方法都可以准确的分离产品,并且可以分析样品中的相关组成。  具体

  日本理学波长色散型x射线荧光光谱仪(WD-XRF,简称理学波谱)一般由光源(X-射线管)、样品室、分光晶体和检测系统等组成。为了准确测量衍射光束与入射光束的夹角,分光晶体系安装在-一个精密的测角仪上,还需要庞大而精密并复杂的机械运动装置。由于晶体的衍射,造成强度的损失,要求作为光源的X射线管的功

  手性拉曼光谱仪主要应用于生物分子,比如蛋白质,核酸,糖和病毒的构像的确定;不需要结晶构像的确定;不需要分离对映体便能直接测得对映体的余量。   手性拉曼光谱仪分析技术是以拉曼效应为基础建立起来的分子结构表征技术,其信号来源与分子的振动和转动。   拉曼光谱的分析方向有:   定性分析:不同

  光谱仪结构组成与特点   一、什么是ICP光谱仪   ICP发射光谱仪即电感耦合等离子体光谱仪,ICP发射光谱法是根据处于激发态的待测元素原子回到基态时发射的特征谱线对待测元素进行分析的方法。由于具有高灵敏度与高精密度与多元素共同分析等优点,ICP发射光谱仪在各分析领域得到了广泛应用,成为材

一、背景介绍近红外(Near Infrared,简称NIR)光是指介于可见光与中红外之间的电磁波,谱区范围是780~2526nm (cm-1),通常又将此波长范围划分为近红外短波区(780~1100 nm)和近红外长波区( nm)。与中红外相比,该区域主

我要回帖

更多关于 吸光度和光密度一样吗 的文章

 

随机推荐