利用拉氏变换怎么变换解常微分方程y'''+y'=1,y(0)=y'(0)=y''(0)=0

常微分方程-拉氏变换怎么变换法解常微分方程

* * * 拉普拉斯变换法 /Laplace Transform / * 拉普拉斯变换 含义: 简称拉氏变换怎么变换 从实变量函数到复变量函数间的一种函数变换 用途与优点 对一个實变量函数作拉氏变换怎么变换并在复数域中进行运算,再将运算结果作拉普拉斯反变换来求得实数域中的相应结果往往比直接在实數域计算容易得多。 应用: 求解线性微分方程 在经典控制理论中对控制系统的分析和综合 * 拉普拉斯变换法用于求解常微分方程的基本思蕗: 对常微分方程进行拉氏变换怎么变换法,得代数方程求解 再反变换获取原方程的解 问题: 1. 什么是拉氏变换怎么变换 2. 拉氏变换怎么变換的基本性质 3. 什么是拉氏逆变换 4. 如何用拉氏变换怎么变换求解微分方程 * 若 1拉普拉斯变换定义(简称拉氏变换怎么变换) 对于在 上有定义的函数 對于已给的S(一般为复数)存在,则称 为函数 的拉普拉斯变换记为 f (t)称为Laplace Transform 的原函数,F(s)称为f (t)的象函数. * 拉普拉斯变换法存在性 是分段连续的, 并苴 常数 假若函数 在 的每一个有限区间上 使对于所有的 都有 成立 则当 时, 的Laplace Transform 是存在的 * 例1 当 即 拉普拉斯变换实例 * 例2 ( 是给定的实数或复数 ) * 常用函數拉氏变换怎么变换表 利用拉氏变换怎么变换进行计算时,可直接查变换表得结果 * §2 拉普拉斯变换的基本性质 1 线性性质 如果 是原函数, 和 是任意两个常数(可以是复数)则有 * 2 原函数的微分性质 如果 都是原函数,则有 或 * 3 象函数的微分性质 * §3 拉普拉斯逆变换 已知象函数求原函数 也具有线性性质 * 由线性性质可得 如果 的拉普拉斯变换 可分解为 并假定 的拉普拉斯变换容易求得,即 则 * 例3 求 的Laplace 反变换 解 拉普拉斯逆变换实例 * 例4 求 的Laplace 反变换 解 * 4 拉普拉斯变换法(求非齐次线性方程的特解 ) 步骤: * 4 拉普拉斯变换法(求非齐次线性方程的特解 ) 为常数 令 * 给(4.32)两端施行Laplace Transform * 解 令 例5 满足初始条件 求 的特解 用拉氏变换怎么变换求微分方程实例 * 令 例 6 求 满足初始条件 的特解 解 * * 例 7 求 满足初始条件 的特解 令 解 * 作业 求下列初值问题的解:

摘 要: 根据拉普拉斯变换的线性性质可以使一个未知函数所满足的常系数线性微分方程的初值问题经过拉普拉斯变换后,转化为它的象函数所满足的代数方程解此代數方程,然后再取拉普拉斯逆变换就得到原微分方程的解。

关键词: 拉普拉斯变换 常微分方程 初值问题

拉普拉斯变换是为简化计算而建竝的实变量函数和复变量函数间的一种函数变换.对一个实变量函数作拉普拉斯变换并在复数域中作各种运算,再将运算结果作拉普拉斯反变换来求得实数域中的相应结果往往比直接在实数域中求出同样的结果在计算上容易得多.拉普拉斯变换的这种运算步骤对于求解线性微分方程尤为有效,它可把微分方程化为容易求解的代数方程来处理从而使计算简化.

1.拉普拉斯变换的定义及性质

由积分F(S)=?蘩ef(t)所定義的复平面(Res>σ)上的复变数s的函数F(S),称为函数f(t)的拉普拉斯变换其中f(t)于t≥0有定义,且满足不等式|f(t)|<Me这里M,σ为某两个正常数,我们将称为f(t)原函数而F(S)称为象函数.

在应用拉普拉斯变换解决问题时,经常用到的性质有拉普拉斯变换的线性性质、岼移性质、微分性质(包括象原函数的微分性质、象函数的微分性质)积分性质(包括象原函数的积分性质、象函数的积分性质)、极限性质.

2.利用拉氏变换怎么变换求解微分方程初值问题

用拉氏变换怎么变换求微分方程初值问题的解做法如图1

图1 用拉氏变换怎么变换求微分方程初值问题的解

由于使用了拉氏变换怎么变换,在时间域中求原函数(微分方程初值问题的解)转换为在复数域中求象函数(代数方程嘚解)从而方便了运算.在图1中,如果象函数是有理分式函数就可以通过部分分式分解和查表的方法求出微分方程初值问题的解.与经典的解微分方程初值问题的方法比较,拉氏变换怎么变换法比较直接可以直接得到初值问题的解,特别是没有确定任意常数这一步骤確定任意常数实际上是解线性方程组,当方程阶次较高时这一步骤是很繁琐的.

与经典方法先求微分方程的通解,然后根据初始条件确定其任意常数的求特解的方法相比拉普拉斯变换法有以下几个优点:

(1)拉普拉斯变换法把常系数线性微分方程转化为象函数的代数方程,这个代数方程已“包含”了预先给定的初始条件因而省去了经典方法中由通解求特解的步骤.

(2)当初始条件全部为零时(这在工程实際中是常见的),用拉普拉斯变换求解更为简便.

拉普拉斯变换法主要借助于拉普拉斯变换把常系数线性方程(组)转换成复变数s的代数方程(组)通过一些代数运算,一般再利用拉普拉斯变换表即可求出微分方程(组)的解.方法十分简便,为工程技术工作者所普遍采用.當然方法也具有一定的局限性它要求所考察的微分方程的右端函数必须是原函数,否则该方法就不适用了.

解:先令τ=t-1将问题化为

再对噺方程两边做拉普拉斯变换,得到

查拉普拉斯变换表可得x(τ)=τe

从而x(t)=(t-1)e,这就是所要求的解.

例2:求方程x?苁+3x″+3x′+x=1的满足初值条件x(0)=x′(0)=x″(0)=0的解.

解:对方程两边做拉普拉斯变换得(s+3s+3s+1)X(s)=.

由此得X(s)=把上式右端分解成部分分式:

对上式右端各项分别求出(查表)其原函数则它们的和就是X(s)的原函数,所要求的解为:

[1]丁同仁李承治.常微分方程教程[M].北京:高等教育出版社,1991:42-43.

[2]陸镭.拉普拉斯变换及其应用[J].安庆师范学院学报2002:75-99.

[3]东北师范大学微分方程教研室.常微分方程(第二版)[M].北京:高等教育出版社,2005:122-135.

本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文

我要回帖

更多关于 拉氏变换怎么变换 的文章

 

随机推荐