玩gal时 plugin-in 怎么办

  随着我国经济社会的快速发展,铁路客货运输量不断增加,列车运行速度不断提高,给铁路安全监控带来巨大的压力,其中铁路异物侵限严重影响到列车的运行安全。入侵检测系统(简称“IDS”)是一种对网络传输进行即时监视,在发现可疑传输时发出警报或者采取主动反应措施的网络安全设备。它与其他网络安全设备的不同之处便在于,IDS是一种积极主动的安全防护技术。 IDS最早出现在1980年4月。 1980年代中期,IDS逐渐发展成为入侵检测专家系统(IDES)。 1990年,IDS分化为基于网络的IDS和基于主机的IDS。后又出现分布式IDS。目前,IDS发展迅速,已有人宣称IDS可以完全取代防火墙。根据信息可分为基于主机IDS和基于网络的IDS,根据检测方法又可分为异常入侵检测和滥用入侵检测。不同于防火墙,IDS入侵检测系统是一个监听设备,没有跨接在任何链路上,无须网络流量流经它便可以工作。因此,对IDS的部署,唯一的要求是:IDS应当挂接在所有所关注流量都必须流经的链路上。在这里,"所关注流量"指的是来自高危网络区域的访问流量和需要进行统计、监视的网络报文。在如今的网络拓扑中,已经很难找到以前的HUB式的共享介质冲突域的网络,绝大部分的网络区域都已经全面升级到交换式的网络结构。

  System-on-a-Programmable-Chip,即可编程片上系统。 用可编程逻辑技术把整个系统放到一块硅片上,称作SOPC。可编程片上系统(SOPC)是一种特殊的嵌入式系统:首先它是片上系统(SOC),即由单个芯片完成整个系统的主要逻辑功能;其次,它是可编程系统,具有灵活的设计方式,可裁减、可扩充、可升级,并具备软硬件在系统可编程的功能。英文全称:System On a Programmable Chip. SOPC实验板中文译名:可编程片上系统SOPC它是用可编程逻辑技术把整个系统放到一块硅片上,来用于嵌入式系统的研究和信息处理。 SOPC是一种特殊的嵌入式系统,它是片上系统(SOC),即由单个芯片完成整个系统的主要逻辑功能但它不是简单的SOC,它也是可编程系统,具有灵活的设计方式,可裁减、可扩充、可升级,并具备软硬件在系统可编程的功能。

  本系统采用SOPC实现分布式列车环境异物入侵前端监测功能。一个NiosⅡ处理器系统由NiosⅡCPU和一系列的外设组成,开发基于Nios-Ⅱ的嵌入式系统,关键在于如何根据功能需要定制NiosⅡ及设计自定义接口。系统采用ADV7l8lB完成模拟视频解码处理,完成CVBS等模拟视频信号到YCrCb数字信号的转换,用硬件描述语言(VHDL)设计视频数据采集模块IP核,来实现前端的视频数据采集。由于采集的视频数据是海量数据,这给存储和传输都带来了很大的不便,需要对视频数据进行预处理,以降低数据量,系统采用VHDL设计相应的视频数据处理模块IP核。整个系统的框图如图l所示。

  2 视频图像采集处理模块设计

  采集模块是整个系统非常重要的组成部分,采集质量的好坏将直接影响整个系统的识别效果。本系统视频A/D选用ADV7181B,它能够自动检测和转化标准的NTSC、PAL和SECAM制的模拟电视基带复合信号,输出4:2:2的符合ITU-R656(国际电信联盟的视频标准)标准的16位/8位复合视频数据,支持6路模拟视频信号的输入。ADV7l81B通过I2C总线实现配置,同时能输出行、场同步信号。ADV718lB输出的数字视频数据通过8位总线TDDATA传输给FPGA。FPGA经视频解码模块在视频数据中识别出有效数据,再根据系统对图像精度的要求进行处理,生成三种数据图像,FPGA(Field-Programmable Gate Array),即现场可编程门阵列,它是在PAL、GAL、CPLD等可件的基础上进一步发展的产物。它是作为专用(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。图2是视频采集处理模块框图,其中,彩色图、灰度图、二值化图的数据量之比是384:128:1,可根据实际视频图像的需要,选择不同数据量的图像。

  系统内各模块功能简要描述如下:

  1)ITU-R656解码模块接收从视频A/D转换器ADV7181B送来的数字视频流,然后对数字视频流进行解码,产生YUV3路视频信号,识别出行、场同步信号。

  2)3个视频缓存模块系统各设计一个FIFO,根据视频数据的大小,缓冲深度各不相同,用于视频数据的缓存。其中FIFO是使用Altera提供的可参数化宏功能模块和LPM函数进行设计,具体是通过Mega Wizard Plug-In Manager的GUI向导实现。

  3)I2C配置模块通过I2C总线对ADV7181B进行初始化配置,选择产生的数字视频格式等。

  4)色彩空间转换模块完成色彩空间由YUV到RGB的转换,使视频数据适合在VGA显示。色彩空间由YUV到RGB的转换按以下转化公式编写相应的硬件描述语言。

  最后生成的YUV到RGB硬件电路模块如图3所示。

  5)图2中Y的输出即为图像的灰度值,Y值的信息可以完整地描述一幅灰度图(灰度等级为256)。将灰度值经二值化后就可以得到一幅二值化的图像,关键是阈值的选择,在这里将灰度阈值设置成可调的输入量,就可以根据具体的应用环境设定理想的阈值。二值化的硬件模块也是用硬件描述语言描述的,生成的模块如图4所示,其工作原理是当图像值大于阈值时输出l,否则输出O。

  3 视频数据图像传输模块设计

  视频数据图像传输部分采用SOPC Builder工具自带的以太网接口IP核,将其添加到NiosⅡ系统中,构建成SOPC系统。其中,DM9000A是一款高速,它具有通用处理器接口,1个10/100M PHY和4K字节的SRAM,它支持8位和16位2种数据接口。SOPC Builder提供将DM-9000A连接到Avalon总线上所需要的接口逻辑。图5是DM9000A IP核接口模块,分为输入和输出两部分,一部分是模块与Avalon总线的连接信号,另一部分是模块与FPGA外部的DM9000A连接的信号。

  最后根据需要配置得到的NiosⅡ软核处理器如图6所示。NiosⅡ是一个用户可配置的通用RISC嵌入式处理器,NiosII集成开发环境(IDE)是NiosⅡ系列嵌入式处理器的基本软件开发工具,所有软件开发任务都可以在NiosⅡIDE下完成。

  本文介绍一种基于SOPC的列车分布式环境异物入侵前端监测系统,详细介绍了SOPC硬件系统的设计配置过程,以及基于此硬件系统配置的NiosⅡ软核处理器的软件设计。最后在Altera公司的DE2开发平台上进行测试,监测得到前端灰度图像如图7所示,达到了前端检测的目的。列车环境异物入侵监测系统软件流程包括对各模块的初始化和对各模块的流程控制,主要有视频采集控制、图像处理控制、图像SDRAM存储控制、以太网接口控制流程等设计。

  基于SOPC技术设计的创新点在于不但软件是可以编程的,构建的硬件系统也是可编程的,这就为系统的灵活配置和软件的灵活设计提供了很大的方便,也有利于系统的后期优化和升级。在设计时,要注意根据具体的硬件资源大小和实现速度要求,选择硬件实现还是软件模拟。同时还要注意前端采集模块的抗抖动设计。这种量体裁衣的硬件配置方式可以最大限度地提高系统的性价比,使得SOPC技术在环境异物入侵监测系统中有着广阔的应用空间。也可以利用HardCopy技术,将实现于FPGA器件上的列车分布式环境异物入侵监测系统通过特定的技术直接向ASIC转化。

我要回帖

更多关于 plugin 的文章

 

随机推荐