c语言中,合适的malloc数组分配的数组可以直接转化为整形吗?

面试中常见的C++面试题总结,快来看看,是否对你有帮助!

1、写出完整版的strcpy函数

使用assert断言函数,判断参数是否为NULL;

遇'\0'则停止赋值;

返回新的字符串的首地址。

... //省略的其它语句

使用malloc分配内存后,应判断是否分配成功;

free之后,应置str为NULL,防止变成野指针。

malloc函数是一种分配长度为num_bytes字节的内存块的函数,可以向系统申请分配指定size个字节的内存空间。malloc的全称是memory allocation,中文叫动态内存分配,当无法知道内存具体位置的时候,想要绑定真正的内存空间,就需要用到动态的分配内存。

所以必须通过 (int *) 来将强制转换。而对于C,没有这个要求,但为了使C程序更方便的移植到C++中来,建议养成强制转换的习惯。

第二、函数的实参为 sizeof(int) ,用于指明一个整型数据需要的大小。

malloc 只管分配内存,并不能对所得的内存进行初始化,所以得到的一片新内存中,其值将是随机的。

3、分别给出BOOL,int,float,指针变量 与“零值”比较的 if 语句

Func ( char str[100] )函数中数组名作为函数形参时,在函数体内,数组名失去了本身的内涵,仅仅只是一个指针;在失去其内涵的同时,它还失去了其常量特性,可以作自增、自减等操作,可以被修改。

但是数组名在不作形参时,仍然代表整个数组,这时的sizeof应返回数组长度。

sizeof返回的单位是字节。对于结构体,sizeof返回可能会有字节填充。结构体的总大小为结构体最宽基本类型成员大小的整数倍。

5、写一个“标准”宏MIN,这个宏输入两个参数并返回较小的一个。另外,当你写下面的代码时会发生什么事?

宏定义中,左侧为宏名和参数,右侧为宏的实现;

在宏的实现中,所有参数应用括号括起来;

整个宏的实现的外面也要用括号括起来;

写下如上代码会导致p自增两次。

条件指示符#ifndef 的最主要目的是防止头文件的重复包含和编译。

extern修饰变量的声明。

如果文件a.c需要引用b.c中变量int v,就可以在a.c中声明extern int v,然后就可以引用变量v。

这里需要注意的是,被引用的变量v的链接属性必须是外链接(external)的,也就是说a.c要引用到v,不只是取决于在a.c中声明extern int v,还取决于变量v本身是能够被引用到的。

7、请说出static和const关键字尽可能多的作用

1. 修饰普通变量,修改变量的存储区域和生命周期,使变量存储在静态区,在main函数运行前就分配了空间,如果有初始值就用初始值初始化它,如果没有初始值系统用默认值初始化它。在每次调用时,其值为上一次调用后改变的值,调用结束后不释放空间。此变量只在声明变量的文件内可见。

2. 修饰普通函数,表明函数的作用范围,仅在定义该函数的文件内才能使用。在多人开发项目时,为了防止与他人命令函数重名,可以将函数定义为static。

3. 修饰成员变量,修饰成员变量使所有的对象只保存一个该变量,而且不需要生成对象就可以访问该成员。

4. 修饰成员函数,修饰成员函数使得不需要生成对象就可以访问该函数,但是在static函数内不能访问非静态成员。

1. 修饰变量,说明该变量不可以被改变;

2. 修饰指针,分为指向常量的指针和指针常量;

3. 常量引用,经常用于形参类型,即避免了拷贝,又避免了函数对值的修改;

4. 修饰成员函数,说明该成员函数内不能修改成员变量。

8、请说一下C/C++ 中指针和引用的区别?

1.指针有自己的一块空间,而引用只是一个别名;

2.使用sizeof看一个指针的大小是4,而引用则是被引用对象的大小;

3.指针可以被初始化为NULL,而引用必须被初始化且必须是一个已有对象 的引用;

4.作为参数传递时,指针需要被解引用才可以对对象进行操作,而直接对引用的修改都会改变引用所指向的对象;

5.可以有const指针,但是没有const引用;

6.指针在使用中可以指向其它对象,但是引用只能是一个对象的引用,不能被改变;

7.指针可以有多级指针(**p),而引用只有一级;

8.指针和引用使用++运算符的意义不一样;

9.如果返回动态内存分配的对象或者内存,必须使用指针,引用可能引起内存泄露。

9、给定三角形ABC和一点P(x,y,z),判断点P是否在ABC内,给出思路并手写代码

根据面积法,如果P在三角形ABC内,那么三角形ABP的面积+三角形BCP的面积+三角形ACP的面积应该等于三角形ABC的面积。

野指针就是指向一个已删除的对象或者未申请访问受限内存区域的指针。

11、为什么析构函数必须是虚函数?为什么C++默认的析构函数不是虚函数?

将可能会被继承的父类的析构函数设置为虚函数,可以保证当我们new一个子类,然后使用基类指针指向该子类对象,释放基类指针时可以释放掉子类的空间,防止内存泄漏。

C++默认的析构函数不是虚函数是因为虚函数需要额外的虚函数表和虚表指针,占用额外的内存。而对于不会被继承的类来说,其析构函数如果是虚函数,就会浪费内存。因此C++默认的析构函数不是虚函数,而是只有当需要当作父类时,设置为虚函数。

PS:C++类的六个默认成员函数:

构造函数:一个特殊的成员函数,名字与类名相同,创建类类型对象的时候,由编译器自动调用,在对象的生命周期内只且调用一次,以保证每个数据成员都有一个合适的初始值。

拷贝构造函数:只有单个形参,而且该形参是对本类类型对象的引用(常用const修饰),这样的构造函数称为拷贝构造函数。拷贝构造函数是特殊的构造函数,创建对象时使用已存在的同类对象来进行初始化,由编译器自动调用。

析构函数:与构造函数功能相反,在对象被销毁时,由编译器自动调用,完成类的一些资源清理和收尾工作。

赋值运算符重载:对于类类型的对象我们需要对‘=’重载,以完成类类型对象之间的赋值。

取址操作符重载:函数返回值为该类型的指针,无参数。

const修饰的取址运算符重载。

12、C++中析构函数的作用?

析构函数与构造函数对应,当对象结束其生命周期,如对象所在的函数已调用完毕时,系统会自动执行析构函数。

析构函数名也应与类名相同,只是在函数名前面加一个位取反符~,例如~stud( ),以区别于构造函数。它不能带任何参数,也没有返回值(包括void类型)。只能有一个析构函数,不能重载。

如果用户没有编写析构函数,编译系统会自动生成一个缺省的析构函数(即使自定义了析构函数,编译器也总是会为我们合成一个析构函数,并且如果自定义了析构函数,编译器在执行时会先调用自定义的析构函数再调用合成的析构函数),它也不进行任何操作。所以许多简单的类中没有用显式的析构函数。

如果一个类中有指针,且在使用的过程中动态的申请了内存,那么最好显示构造析构函数在销毁类之前,释放掉申请的内存空间,避免内存泄漏。

类析构顺序:1)派生类本身的析构函数;2)对象成员析构函数;3)基类析构函数。

13、map和set有什么区别,分别又是怎么实现的?

map和set都是C++的关联容器,其底层实现都是红黑树(RB-Tree)。由于 map 和set所开放的各种操作接口,RB-tree 也都提供了,所以几乎所有的 map 和set的操作行为,都只是转调 RB-tree 的操作行为。

(1)map中的元素是key-value(关键字—值)对:关键字起到索引的作用,值则表示与索引相关联的数据;Set与之相对就是关键字的简单集合,set中每个元素只包含一个关键字。

(2)set的迭代器是const的,不允许修改元素的值;map允许修改value,但不允许修改key。其原因是因为map和set是根据关键字排序来保证其有序性的,如果允许修改key的话,那么首先需要删除该键,然后调节平衡,再插入修改后的键值,调节平衡,如此一来,严重破坏了map和set的结构,导致iterator失效,不知道应该指向改变前的位置,还是指向改变后的位置。所以STL中将set的迭代器设置成const,不允许修改迭代器的值;而map的迭代器则不允许修改key值,允许修改value值。

(3)map支持下标操作,set不支持下标操作。map可以用key做下标,map的下标运算符[ ]将关键码作为下标去执行查找,如果关键码不存在,则插入一个具有该关键码和mapped_type类型默认值的元素至map中,因此下标运算符[ ]在map应用中需要慎用,const_map不能用,只希望确定某一个关键值是否存在而不希望插入元素时也不应该使用,mapped_type类型没有默认值也不应该使用。如果find能解决需要,尽可能用find。

14、C++中类成员的访问权限有哪些?

C++通过 public、protected、private 三个关键字来控制成员变量和成员函数的访问权限,它们分别表示公有的、受保护的、私有的,被称为成员访问限定符。在类的内部(定义类的代码内部),无论成员被声明为 public、protected 还是 private,都是可以互相访问的,没有访问权限的限制。在类的外部(定义类的代码之外),只能通过对象访问成员,并且通过对象只能访问

private和protected的区别是,子类的对象也可以访问protected,但只有本类的对象可以访问private。子类的对象也可以访问private,但只有本类的对象可以访问protected。

在C++中,可以用struct和class定义类,都可以继承。区别在于:struct的默认继承权限和默认访问权限是public,而class的默认继承权限和默认访问权限是private。

16、一个C++源文件从文本到可执行文件经历的过程?

对于C++源文件,从文本到可执行文件一般需要四个过程:

预处理阶段:对源代码文件中文件包含关系(头文件)、预编译语句(宏定义)进行分析和替换,生成预编译文件。

编译阶段:将经过预处理后的预编译文件转换成特定汇编代码,生成汇编文件

汇编阶段:将编译阶段生成的汇编文件转化成机器码,生成可重定位目标文件

链接阶段:将多个目标文件及所需要的库连接成最终的可执行目标文件

17、include头文件的顺序以及双引号””和尖括号<>的区别?

Include头文件的顺序:对于include的头文件来说,如果在文件a.h中声明一个在文件b.h中定义的变量,而不引用b.h。那么要在a.c文件中引用b.h文件,并且要先引用b.h,后引用a.h,否则汇报变量类型未声明错误。

双引号和尖括号的区别:编译器预处理阶段查找头文件的路径不一样。

对于使用双引号包含的头文件,查找头文件路径的顺序为:

编译器设置的头文件路径(编译器可使用-I显式指定搜索路径)

对于使用尖括号包含的头文件,查找头文件的路径顺序为:

编译器设置的头文件路径(编译器可使用-I显式指定搜索路径)

18、malloc的原理,另外brk系统调用和mmap系统调用的作用分别是什么?

Malloc函数用于动态分配内存。为了减少内存碎片和系统调用的开销,malloc其采用内存池的方式,先申请大块内存作为堆区,然后将堆区分为多个内存块,以块作为内存管理的基本单位。当用户申请内存时,直接从堆区分配一块合适的空闲块。Malloc采用隐式链表结构将堆区分成连续的、大小不一的块,包含已分配块和未分配块;同时malloc采用显示链表结构来管理所有的空闲块,即使用一个双向链表将空闲块连接起来,每一个空闲块记录了一个连续的、未分配的地址。

当进行内存分配时,Malloc会通过隐式链表遍历所有的空闲块,选择满足要求的块进行分配;当进行内存合并时,malloc采用边界标记法,根据每个块的前后块是否已经分配来决定是否进行块合并。

Malloc在申请内存时,一般会通过brk或者mmap系统调用进行申请。其中当申请内存小于128K时,会使用系统函数brk在堆区中分配;而当申请内存大于128K时,会使用系统函数mmap在映射区分配。

19、C++的内存管理是怎样的?

在C++中,虚拟内存分为代码段、数据段、BSS段、堆区、文件映射区以及栈区六部分。

代码段:包括只读存储区和文本区,其中只读存储区存储字符串常量,文本区存储程序的机器代码。

数据段:存储程序中已初始化的全局变量和静态变量

bss 段:存储未初始化的全局变量和静态变量(局部+全局),以及所有被初始化为0的全局变量和静态变量。

堆区:调用new/malloc函数时在堆区动态分配内存,同时需要调用delete/free来手动释放申请的内存。

映射区:存储动态链接库以及调用mmap函数进行的文件映射

栈区:使用栈空间存储函数的返回地址、参数、局部变量、返回值

20、如何判断内存泄漏?

内存泄漏通常是由于调用了malloc/new等内存申请的操作,但是缺少了对应的free/delete。为了判断内存是否泄露,我们一方面可以使用linux环境下的内存泄漏检查工具Valgrind,另一方面我们在写代码时可以添加内存申请和释放的统计功能,统计当前申请和释放的内存是否一致,以此来判断内存是否泄露。

21、什么时候会发生段错误?

段错误通常发生在访问非法内存地址的时候,具体来说分为以下几种情况:

试图修改字符串常量的内容

1、new分配内存按照数据类型进行分配,malloc分配内存按照指定的大小分配;

2、new返回的是指定对象的指针,而malloc返回的是void*,因此malloc的返回值一般都需要进行类型转化。

3、new不仅分配一段内存,而且会调用构造函数,malloc不会。

4、new分配的内存要用delete销毁,malloc要用free来销毁;delete销毁的时候会调用对象的析构函数,而free则不会。

5、new是一个操作符可以重载,malloc是一个库函数。

6、malloc分配的内存不够的时候,可以用realloc扩容。扩容的原理?new没用这样操作。

8、申请数组时: new[]一次分配所有内存,多次调用构造函数,搭配使用delete[],delete[]多次调用析构函数,销毁数组中的每个对象。而malloc则只能sizeof(int) * n。

1)A *a:a是一个局部变量,类型为指针,故而操作系统在程序栈区开辟4/8字节的空间(0x000m),分配给指针a。

2)new A:通过new动态的在堆区申请类A大小的空间(0x000n)。

3)a = new A:将指针a的内存区域填入栈中类A申请到的地址的地址。即*(0x000m)=0x000n。

24、一个类,里面有static,virtual,之类的,来说一说这个类的内存分布?

对于非静态数据成员,每个类对象都有自己的拷贝。而静态数据成员被当做是类的成员,无论这个类被定义了多少个,静态数据成员都只有一份拷贝,为该类型的所有对象所共享(包括其派生类)。所以,静态数据成员的值对每个对象都是一样的,它的值可以更新。

因为静态数据成员在全局数据区分配内存,属于本类的所有对象共享,所以它不属于特定的类对象,在没有产生类对象前就可以使用。

与普通的成员函数相比,静态成员函数由于不是与任何的对象相联系,因此它不具有this指针。从这个意义上来说,它无法访问属于类对象的非静态数据成员,也无法访问非静态成员函数,只能调用其他的静态成员函数。

Static修饰的成员函数,在代码区分配内存。

2、C++继承和虚函数

C++多态分为静态多态和动态多态。静态多态是通过重载和模板技术实现,在编译的时候确定。动态多态通过虚函数和继承关系来实现,执行动态绑定,在运行的时候确定。

动态多态实现有几个条件:

(2) 一个基类的指针或引用指向派生类的对象;

基类指针在调用成员函数(虚函数)时,就会去查找该对象的虚函数表。虚函数表的地址在每个对象的首地址。查找该虚函数表中该函数的指针进行调用。

每个对象中保存的只是一个虚函数表的指针,C++内部为每一个类维持一个虚函数表,该类的对象的都指向这同一个虚函数表。

虚函数表中为什么就能准确查找相应的函数指针呢?因为在类设计的时候,虚函数表直接从基类也继承过来,如果覆盖了其中的某个虚函数,那么虚函数表的指针就会被替换,因此可以根据指针准确找到该调用哪个函数。

如果一个类是局部变量则该类数据存储在栈区,如果一个类是通过new/malloc动态申请的,则该类数据存储在堆区。

如果该类是virutal继承而来的子类,则该类的虚函数表指针和该类其他成员一起存储。虚函数表指针指向只读数据段中的类虚函数表,虚函数表中存放着一个个函数指针,函数指针指向代码段中的具体函数。

如果类中成员是virtual属性,会隐藏父类对应的属性。

25、静态变量什么时候初始化?

静态变量存储在虚拟地址空间的数据段和bss段,C语言中其在代码执行之前初始化,属于编译期初始化。而C++中由于引入对象,对象生成必须调用构造函数,因此C++规定全局或局部静态对象当且仅当对象首次用到时进行构造。

26、TCP怎么保证可靠性?

(1)序列号、确认应答、超时重传

数据到达接收方,接收方需要发出一个确认应答,表示已经收到该数据段,并且确认序号会说明了它下一次需要接收的数据序列号。如果发送发迟迟未收到确认应答,那么可能是发送的数据丢失,也可能是确认应答丢失,这时发送方在等待一定时间后会进行重传。这个时间一般是2*RTT(报文段往返时间)+一个偏差值。

(2)窗口控制与高速重发控制/快速重传(重复确认应答)

TCP会利用窗口控制来提高传输速度,意思是在一个窗口大小内,不用一定要等到应答才能发送下一段数据,窗口大小就是无需等待确认而可以继续发送数据的最大值。如果不使用窗口控制,每一个没收到确认应答的数据都要重发。

使用窗口控制,如果数据段丢失,后面数据每次传输,确认应答都会不停地发送序号为1001的应答,表示我要接收1001开始的数据,发送端如果收到3次相同应答,就会立刻进行重发;但还有种情况有可能是数据都收到了,但是有的应答丢失了,这种情况不会进行重发,因为发送端知道,如果是数据段丢失,接收端不会放过它的,会疯狂向它提醒......

如果把窗口定的很大,发送端连续发送大量的数据,可能会造成网络的拥堵(大家都在用网,你在这狂发,吞吐量就那么大,当然会堵),甚至造成网络的瘫痪。所以TCP在为了防止这种情况而进行了拥塞控制。

慢启动:定义拥塞窗口,一开始将该窗口大小设为1,之后每次收到确认应答(经过一个rtt),将拥塞窗口大小*2。

拥塞避免:设置慢启动阈值,一般开始都设为65536。拥塞避免是指当拥塞窗口大小达到这个阈值,拥塞窗口的值不再指数上升,而是加法增加(每次确认应答/每个rtt,拥塞窗口大小+1),以此来避免拥塞。

将报文段的超时重传看做拥塞,则一旦发生超时重传,我们需要先将阈值设为当前窗口大小的一半,并且将窗口大小设为初值1,然后重新进入慢启动过程。

快速重传:在遇到3次重复确认应答(高速重发控制)时,代表收到了3个报文段,但是这之前的1个段丢失了,便对它进行立即重传。

然后,先将阈值设为当前窗口大小的一半,然后将拥塞窗口大小设为慢启动阈值+3的大小。

这样可以达到:在TCP通信时,网络吞吐量呈现逐渐的上升,并且随着拥堵来降低吞吐量,再进入慢慢上升的过程,网络不会轻易的发生瘫痪。

27、红黑树和AVL树的定义,特点,以及二者区别

平衡二叉树(AVL树):

平衡二叉树又称为AVL树,是一种特殊的二叉排序树。其左右子树都是平衡二叉树,且左右子树高度之差的绝对值不超过1。一句话表述为:以树中所有结点为根的树的左右子树高度之差的绝对值不超过1。将二叉树上结点的左子树深度减去右子树深度的值称为平衡因子BF,那么平衡二叉树上的所有结点的平衡因子只可能是-1、0和1。只要二叉树上有一个结点的平衡因子的绝对值大于1,则该二叉树就是不平衡的。

红黑树是一种二叉查找树,但在每个节点增加一个存储位表示节点的颜色,可以是红或黑(非红即黑)。通过对任何一条从根到叶子的路径上各个节点着色的方式的限制,红黑树确保没有一条路径会比其它路径长出两倍,因此,红黑树是一种弱平衡二叉树,相对于要求严格的AVL树来说,它的旋转次数少,所以对于搜索,插入,删除操作较多的情况下,通常使用红黑树。

1. 每个节点非红即黑

3. 每个叶节点(叶节点即树尾端NULL指针或NULL节点)都是黑的;

4. 如果一个节点是红色的,则它的子节点必须是黑色的。

5. 对于任意节点而言,其到叶子点树NULL指针的每条路径都包含相同数目的黑节点;

AVL 树是高度平衡的,频繁的插入和删除,会引起频繁的rebalance,导致效率下降;红黑树不是高度平衡的,算是一种折中,插入最多两次旋转,删除最多三次旋转。

对于map,其底层是基于红黑树实现的,优点如下:

1)有序性,这是map结构最大的优点,其元素的有序性在很多应用中都会简化很多的操作

2)map的查找、删除、增加等一系列操作时间复杂度稳定,都为logn

1)查找、删除、增加等操作平均时间复杂度较慢,与n相关

对于unordered_map来说,其底层是一个哈希表,优点如下:

查找、删除、添加的速度快,时间复杂度为常数级O(c)

因为unordered_map内部基于哈希表,以(key,value)对的形式存储,因此空间占用率高

Unordered_map的查找、删除、添加的时间复杂度不稳定,平均为O(c),取决于哈希函数。极端情况下可能为O(n)

1、直接全部排序(只适用于内存够的情况)

当数据量较小的情况下,内存中可以容纳所有数据。则最简单也是最容易想到的方法是将数据全部排序,然后取排序后的数据中的前K个。

这种方法对数据量比较敏感,当数据量较大的情况下,内存不能完全容纳全部数据,这种方法便不适应了。即使内存能够满足要求,该方法将全部数据都排序了,而题目只要求找出top K个数据,所以该方法并不十分高效,不建议使用。

2、快速排序的变形 (只使用于内存够的情况)

这是一个基于快速排序的变形,因为第一种方法中说到将所有元素都排序并不十分高效,只需要找出前K个最大的就行。

这种方法类似于快速排序,首先选择一个划分元,将比这个划分元大的元素放到它的前面,比划分元小的元素放到它的后面,此时完成了一趟排序。如果此时这个划分元的序号index刚好等于K,那么这个划分元以及它左边的数,刚好就是前K个最大的元素;如果index > K,那么前K大的数据在index的左边,那么就继续递归的从index-1个数中进行一趟排序;如果index < K,那么再从划分元的右边继续进行排序,直到找到序号index刚好等于K为止。再将前K个数进行排序后,返回Top K个元素。这种方法就避免了对除了Top K个元素以外的数据进行排序所带来的不必要的开销。

这是一种局部淘汰法。先读取前K个数,建立一个最小堆。然后将剩余的所有数字依次与最小堆的堆顶进行比较,如果小于或等于堆顶数据,则继续比较下一个;否则,删除堆顶元素,并将新数据插入堆中,重新调整最小堆。当遍历完全部数据后,最小堆中的数据即为最大的K个数。

将全部数据分成N份,前提是每份的数据都可以读到内存中进行处理,找到每份数据中最大的K个数。此时剩下N*K个数据,如果内存不能容纳N*K个数据,则再继续分治处理,分成M份,找出每份数据中最大的K个数,如果M*K个数仍然不能读到内存中,则继续分治处理。直到剩余的数可以读入内存中,那么可以对这些数使用快速排序的变形或者归并排序进行处理。

如果这些数据中有很多重复的数据,可以先通过hash法,把重复的数去掉。这样如果重复率很高的话,会减少很大的内存用量,从而缩小运算空间。处理后的数据如果能够读入内存,则可以直接排序;否则可以使用分治法或者最小堆法来处理数据。

30、栈和堆的区别,以及为什么栈要快?

堆是由低地址向高地址扩展;栈是由高地址向低地址扩展

堆中的内存需要手动申请和手动释放;栈中内存是由OS自动申请和自动释放,存放着参数、局部变量等内存

堆中频繁调用malloc和free,会产生内存碎片,降低程序效率;而栈由于其先进后出的特性,不会产生内存碎片

堆的分配效率较低,而栈的分配效率较高

栈是操作系统提供的数据结构,计算机底层对栈提供了一系列支持:分配专门的寄存器存储栈的地址,压栈和入栈有专门的指令执行;而堆是由C/C++函数库提供的,机制复杂,需要一系列分配内存、合并内存和释放内存的算法,因此效率较低。

31、写个函数在main函数执行前先运行

C++调用C函数需要extern C,因为C语言没有函数重载。

33、STL迭代器删除元素

1.对于序列容器vector,deque来说,使用erase(itertor)后,后边的每个元素的迭代器都会失效,但是后边每个元素都会往前移动一个位置,但是erase会返回下一个有效的迭代器;

2.对于关联容器map set来说,使用了erase(iterator)后,当前元素的迭代器失效,但是其结构是红黑树,删除当前元素的,不会影响到下一个元素的迭代器,所以在调用erase之前,记录下一个元素的迭代器即可。

3.对于list来说,它使用了不连续分配的内存,并且它的erase方法也会返回下一个有效的iterator。

连续存储的容器,动态数组,在堆上分配空间

vector 增加(插入)新元素时,如果未超过当时的容量,则还有剩余空间,那么直接添加到最后(插入指定位置),然后调整迭代器。

如果没有剩余空间了,则会重新配置原有元素个数的两倍空间,然后将原空间元素通过复制的方式初始化新空间,再向新空间增加元素,最后析构并释放原空间,之前的迭代器会失效。

插入:在最后插入(空间够):很快

在最后插入(空间不够):需要内存申请和释放,以及对之前数据进行拷贝。

在中间插入(空间够):内存拷贝

在中间插入(空间不够):需要内存申请和释放,以及对之前数据进行拷贝。

删除:在最后删除:很快

适用场景:经常随机访问,且不经常对非尾节点进行插入删除。

动态链表,在堆上分配空间,每插入一个元数都会分配空间,每删除一个元素都会释放空间。

访问:随机访问性能很差,只能快速访问头尾节点。

插入:很快,一般是常数开销

删除:很快,一般是常数开销

适用场景:经常插入删除大量数据

1)vector底层实现是数组;list是双向 链表。

2)vector支持随机访问,list不支持。

4)vector在中间节点进行插入删除会导致内存拷贝,list不会。

5)vector一次性分配好内存,不够时才进行2倍扩容;list每次插入新节点都会进行内存申请。

6)vector随机访问性能好,插入删除性能差;list随机访问性能差,插入删除性能好。

vector拥有一段连续的内存空间,因此支持随机访问,如果需要高效的随即访问,而不在乎插入和删除的效率,使用vector。

list拥有一段不连续的内存空间,如果需要高效的插入和删除,而不关心随机访问,则应使用list。

reserve():改变当前容器的最大容量(capacity),它不会生成元素,只是确定这个容器允许放入多少对象,如果reserve(len)的值大于当前的capacity(),那么会重新分配一块能存len个对象的空间,然后把之前v.size()个对象通过copy construtor复制过来,销毁之前的内存。

36、源码到可执行文件的过程?

主要处理源代码文件中的以“#”开头的预编译指令。处理规则见下

1、删除所有的#define,展开所有的宏定义。

2、处理所有的条件预编译指令,如“#if”、“#endif”、“#ifdef”、“#elif”和“#else”。

3、处理“#include”预编译指令,将文件内容替换到它的位置,这个过程是递归进行的,文件中包含其他文件。

4、删除所有的注释,“//”和“/**/”。

5、保留所有的#pragma 编译器指令,编译器需要用到他们,如:#pragma once 是为了防止有文件被重复引用。

6、添加行号和文件标识,便于编译时编译器产生调试用的行号信息,和编译时产生编译错误或警告是能够显示行号。

把预编译之后生成的xxx.i或xxx.ii文件,进行一系列词法分析、语法分析、语义分析及优化后,生成相应的汇编代码文件。

1、词法分析:利用类似于“有限状态机”的算法,将源代码程序输入到扫描机中,将其中的字符序列分割成一系列的记号。

2、语法分析:语法分析器对由扫描器产生的记号,进行语法分析,产生语法树。由语法分析器输出的语法树是一种以表达式为节点的树。

3、语义分析:语法分析器只是完成了对表达式语法层面的分析,语义分析器则对表达式是否有意义进行判断,其分析的语义是静态语义——在编译期能分期的语义,相对应的动态语义是在运行期才能确定的语义。

4、优化:源代码级别的一个优化过程。

5、目标代码生成:由代码生成器将中间代码转换成目标机器代码,生成一系列的代码序列——汇编语言表示。

6、目标代码优化:目标代码优化器对上述的目标机器代码进行优化:寻找合适的寻址方式、使用位移来替代乘法运算、删除多余的指令等。

将汇编代码转变成机器可以执行的指令(机器码文件)。 汇编器的汇编过程相对于编译器来说更简单,没有复杂的语法,也没有语义,更不需要做指令优化,只是根据汇编指令和机器指令的对照表一一翻译过来,汇编过程有汇编器as完成。经汇编之后,产生目标文件(与可执行文件格式几乎一样)xxx.o(Windows下)、xxx.obj(Linux下)。

将不同的源文件产生的目标文件进行链接,从而形成一个可以执行的程序。链接分为静态链接和动态链接:

函数和数据被编译进一个二进制文件。在使用静态库的情况下,在编译链接可执行文件时,链接器从库中复制这些函数和数据并把它们和应用程序的其它模块组合起来创建最终的可执行文件。

空间浪费:因为每个可执行程序中对所有需要的目标文件都要有一份副本,所以如果多个程序对同一个目标文件都有依赖,会出现同一个目标文件都在内存存在多个副本;

更新困难:每当库函数的代码修改了,这个时候就需要重新进行编译链接形成可执行程序。

运行速度快:但是静态链接的优点就是,在可执行程序中已经具备了所有执行程序所需要的任何东西,在执行的时候运行速度快。

动态链接的基本思想是把程序按照模块拆分成各个相对独立部分,在程序运行时才将它们链接在一起形成一个完整的程序,而不是像静态链接一样把所有程序模块都链接成一个单独的可执行文件。

共享库:就是即使需要每个程序都依赖同一个库,但是该库不会像静态链接那样在内存中存在多分,副本,而是这多个程序在执行时共享同一份副本;

更新方便:更新时只需要替换原来的目标文件,而无需将所有的程序再重新链接一遍。当程序下一次运行时,新版本的目标文件会被自动加载到内存并且链接起来,程序就完成了升级的目标。

性能损耗:因为把链接推迟到了程序运行时,所以每次执行程序都需要进行链接,所以性能会有一定损失。

37、tcp握手为什么两次不可以?为什么不用四次?

两次不可以:tcp是全双工通信,两次握手只能确定单向数据链路是可以通信的,并不能保证反向的通信正常

本来握手应该和挥手一样都是需要确认两个方向都能联通的,本来模型应该是:

1.客户端发送syn0给服务器

因为tcp是全双工的,上边的四部确认了数据在两个方向上都是可以正确到达的,但是2,3步没有没有上下的联系,可以将其合并,加快握手效率,所有就变成了3步握手。

面试找工作不是一朝一夕就可以完成的事情,而且失败的面试经历未必是坏事,积累面试经验也是一种进步,希望这里可以帮到你。

学习IT相关内容,找“职坐标在线”

今天小编要和大家分享的是C语言结构体定义 C语言常犯错误,接下来我将从C语言结构体定义,C语言常犯错误,C语言高效编程的几招,C语言声明学习之初级篇,C语言声明学习之中级篇,C语言声明学习之高级篇,C语言在开发中的几个问题,C语言编译过程总结详解,这几个方面来介绍。

C语言是目前世界上流行、使用最广泛的高级程序设计语言。C语言对操作系统和系统使用程序以及需要对硬件进行操作的场合,用C语言明显优于其它高级语言,许多大型应用软件都是用C语言编写的。C语言具有绘图能力强,可移植性,并具备很强的数据处理能力,因此适于编写系统软件,三维,二维图形和动画它是数值计算的高级语言。

语言中的“结构体”其实就相当于其他高级语言中的“记录”,结构体的定义方法如下:

};(注意最后的分号不能省略)。

其中第一行的“student”是该结构体的名称,花括号里面的内容是结构体的成员名,这是声明结构体的一般形式。也可以在声明结构体的同时对它进行初始化,例如:

该代码中的“pupil[5]”称为结构体数组,它属于结构体变量,在定义该变量的同时对它进行了初始化操作。我们也可以先声明结构体,然后再对它进行初始化操作。

该程序中定义了一个名为“student”的结构体,变量名为“a”,然后再后面“if”包含的符合语句中对该结构体进行初始化。在此,我们可以看出,对结构体的初始化,只能对它里面的每个成员分别初始化。

此程序是关于结构体指针变量作函数参数,这样可以提高程序的运行效率,程序中我们定义了一个“stu”的结构体,变量名为“pupil[5]”,并对其进行了初始化,在主函数中定义了一个该结构体的指针ps,将pupil赋值给ps,当函数avg()调用该结构体时,用指针ps来传递pupil的地址,从而,提高了该程序的效率。

结构体与指针的结合使用,可以有效的解决现实生活中的很多问题,因此C语言中的指针和结构体应该能够熟练的掌握。

语言的最大特点是:功能强、使用方便灵活。C编译的程序对语法检查并不象其它高级语言那么严格,这就给编程人员留下“灵活的余地”,但还是由于这个灵活给程序的调试带来了许多不便,尤其对初学C语言的人来说,经常会出一些连自己都不知道错在哪里的错误。看着有错的程序,不知该如何改起,本人通过对C的学习,积累了一些C编程时常犯的错误,写给各位学员以供参考。

1.书写标识符时,忽略了大小写字母的区别。

编译程序把a和A认为是两个不同的变量名,而显示出错信息。C认为大写字母和小写字母是两个不同的字符。习惯上,符号常量名用大写,变量名用小写表示,以增加可读性。

2.忽略了变量的类型,进行了不合法的运算。

%是求余运算,得到a/b的整余数。整型变量a和b可以进行求余运算,而实型变量则不允许进行“求余”运算。

3.将字符常量与字符串常量混淆。

在这里就混淆了字符常量与字符串常量,字符常量是由一对单引号括起来的单个字符,字符串常量是一对双引号括起来的字符序列。C规定以“\”作字符串结束标志,它是由系统自动加上的,所以字符串“a”实际上包含两个字符:‘a'和‘\',而把它赋给一个字符变量是不行的。

4.忽略了“=”与“==”的区别。

在许多高级语言中,用“=”符号作为关系运算符“等于”。如在BASIC程序中可以写

但C语言中,“=”是赋值运算符,“==”是关系运算符。如:

前者是进行比较,a是否和3相等,后者表示如果a和3相等,把b值赋给a。由于习惯问题,初学者往往会犯这样的错误。

分号是C语句中不可缺少的一部分,语句末尾必须有分号。

编译时,编译程序在“a=1”后面没发现分号,就把下一行“b=2”也作为上一行语句的一部分,这就会出现语法错误。改错时,有时在被指出有错的一行中未发现错误,就需要看一下上一行是否漏掉了分号。

对于复合语句来说,最后一个语句中最后的分号不能忽略不写(这是和pASCAL不同的)。

对于一个复合语句,如:

复合语句的花括号后不应再加分号,否则将会画蛇添足。

本是如果3整除a,则I加1。但由于if(a%3==0)后多加了分号,则if语句到此结束,程序将执行I++语句,不论3是否整除a,I都将自动加1。

本意是先后输入5个数,每输入一个数后再将它输出。由于for()后多加了一个分号,使循环体变为空语句,此时只能输入一个数并输出它。

7.输入变量时忘记加地址运算符“&”。

这是不合法的。Scanf函数的作用是:按照a、b在中的地址。

输入时,不能用逗号作两个数据间的分隔符,如下面输入不合法:

输入数据时,在两个数据之间以一个或多个空格间隔,也可用回车键,跳格键tab。

C规定:如果在“格式控制”字符串中除了格式说明以外还有其它字符,则在输入数据时应输入与这些字符相同的字符。下面输入是合法的:

此时不用逗号而用空格或其它字符是不对的。

9.输入字符的格式与要求不一致。

在用“%c”格式输入字符时,“空格字符”和“转义字符”都作为有效字符输入。

字符“a”送给c1,字符“”送给c2,字符“b”送给c3,因为%c只要求读入一个字符,后面不需要用空格作为两个字符的间隔。

10.输入输出的数据类型与所用格式说明符不一致。

例如,a已定义为整型,b定义为实型

编译时不给出出错信息,但运行结果将与原意不符。这种错误尤其需要注意。

11.输入数据时,企图规定精度。

这样做是不合法的,输入数据时不能规定精度。

例如:根据考试成绩的等级打印出百分制数段。

由于漏写了break语句,case只起标号的作用,而不起判断作用。因此,当grade值为A时,printf函数在执行完第一个语句后接着执行第二、三、四、五个printf函数语句。正确写法应在每个分支后再加上“break;”。例如

可以看到,当输入I的值小于或等于10时,二者得到的结果相同。而当I>10时,二者结果就不同了。因为while循环是先判断后执行,而do-while循环是先执行后判断。对于大于10的数while循环一次也不执行循环体,而do-while语句则要执行一次循环体。

14.定义数组时误用变量。

数组名后用方括号括起来的是常量表达式,可以包括常量和符号常量。即C不允许对数组的大小作动态定义。

15.在定义数组时,将定义的“元素个数”误认为是可使的最大下标值。

C语言规定:定义时用a[10],表示a数组有10个元素。其下标值由0开始,所以数组元素a[10]是不存在的。

16.初始化数组时,未使用静态存储。

这样初始化数组是不对的。C语言规定只有静态存储(static)数组和外部存储(exterm)数组才能初始化。应改为:

17.在不应加地址运算符&的位置加了地址运算符。

C语言编译系统对数组名的处理是:数组名代表该数组的起始地址,且scanf函数中的输入项是字符数组名,不必要再加地址符&。应改为:

18.同时定义了形参和函数中的局部变量。

形参应该在函数体外定义,而局部变量应该在函数体内定义。应改为:

编写高效简洁的C语言代码,是许多软件工程师追求的目标。本文就工作中的一些体会和经验做相关的阐述,不对的地方请各位指教。

计算机程序中最大的矛盾是空间和时间的矛盾,那么,从这个角度出发逆向思维来考虑程序的效率问题,我们就有了解决问题的第1招——以空间换时间。

(使用的时候可以直接用指针来操作。)

从上面的例子可以看出,A和B的效率是不能比的。在同样的存储空间下,B直接使用指针就可以操作了,而A需要调用两个字符函数才能完成。B的缺点在于灵活性没有A好。在需要频繁更改一个字符串内容的时候,A具有更好的灵活性;如果采用方法B,则需要预存许多字符串,虽然占用了大量的内存,但是获得了程序执行的高效率。

如果系统的实时性要求很高,内存还有一些,那我推荐你使用该招数。

该招数的变招——使用宏函数而不是函数。举例如下:

函数和宏函数的区别就在于,宏函数占用了大量的空间,而函数占用了时间。大家要知道的是,函数调用是要使用系统的栈来保存数据的,如果编译器里有栈检查选项,一般在函数的头会嵌入一些汇编语句对当前栈进行检查;同时,CpU也要在函数调用时保存和恢复当前的现场,进行压栈和弹栈操作,所以,函数调用需要一些CpU时间。而宏函数不存在这个问题。宏函数仅仅作为预先写好的代码嵌入到当前程序,不会产生函数调用,所以仅仅是占用了空间,在频繁调用同一个宏函数的时候,该现象尤其突出。D方法是我看到的最好的置位操作函数,是ARM公司源码的一部分,在短短的三行内实现了很多功能,几乎涵盖了所有的位操作功能。C方法是其变体,其中滋味还需大家仔细体会。

第2招:数学方法解决问题

现在我们演绎高效C语言编写的第二招——采用数学方法来解决问题。

数学是计算机之母,没有数学的依据和基础,就没有计算机的发展,所以在编写程序的时候,采用一些数学方法会对程序的执行效率有数量级的提高。

举例如下,求1~100的和。

这个例子是我印象最深的一个数学用例,是我的计算机启蒙老师考我的。当时我只有小学三年级,可惜我当时不知道用公式N×(N+1)/2来解决这个问题。方法E循环了100次才解决问题,也就是说最少用了100个赋值,100个判断,200个加法(I和j);而方法F仅仅用了1个加法,1次乘法,1次除法。效果自然不言而喻。所以,现在我在编程序的时候,更多的是动脑筋找规律,最大限度地发挥数学的威力来提高程序运行的效率。第3招:使用位操作

实现高效的C语言编写的第三招——使用位操作,减少除法和取模的运算。

在计算机程序中,数据的位是可以操作的最小数据单位,理论上可以用“位运算”来完成所有的运算和操作。一般的位操作是用来控制硬件的,或者做数据变换使用,但是,灵活的位操作可以有效地提高程序运行的效率。举例如下:

在字面上好像H比G麻烦了好多,但是,仔细查看产生的汇编代码就会明白,方法G调用了基本的取模函数和除法函数,既有函数调用,还有很多汇编代码和寄存器参与运算;而方法H则仅仅是几句相关的汇编,代码更简洁,效率更高。当然,由于编译器的不同,可能效率的差距不大,但是,以我目前遇到的MSC,ARMC来看,效率的差距还是不小。相关汇编代码就不在这里列举了。

运用这招需要注意的是,因为CpU的不同而产生的问题。比如说,在pC上用这招编写的程序,并在pC上调试通过,在移植到一个16位机平台上的时候,可能会产生代码隐患。所以只有在一定技术进阶的基础下才可以使用这招。

高效C语言编程的必杀技,第四招——嵌入汇编。“在熟悉汇编语言的人眼里,C语言编写的程序都是垃圾”。这种说法虽然偏激了一些,但是却有它的道理。汇编语言是效率最高的计算机语言,但是,不可能靠着它来写一个操作系统吧?所以,为了获得程序的高效率,我们只好采用变通的方法——嵌入汇编,混合编程。

举例如下,将数组一赋值给数组二,要求每一字节都相符。

方法I是最常见的方法,使用了1024次循环;方法J则根据平台不同做了区分,在ARM平台下,用嵌入汇编仅用128次循环就完成了同样的操作。这里有朋友会说,为什么不用标准的内存拷贝函数呢?这是因为在源数据里可能含有数据为0的字节,这样的话,标准库函数会提前结束而不会完成我们要求的操作。这个例程典型应用于LCD数据的拷贝过程。根据不同的CpU,熟练使用相应的嵌入汇编,可以大大提高程序执行的效率。虽然是必杀技,但是如果轻易使用会付出惨重的代价。这是因为,使用了嵌入汇编,便限制了程序的可移植性,使程序在不同平台移植的过程中,卧虎藏龙,险象环生!同时该招数也与现代软件工程的思想相违背,只有在迫不得已的情况下才可以采用。切记,切记。

使用C语言进行高效率编程,我的体会仅此而已。在此以本文抛砖引玉,还请各位高手共同切磋。希望各位能给出更好的方法,大家一起提高我们的编程技巧。

C语言声明学习之初级篇

C语言为我们定义了四种基本数据类型:整型,浮点型,指针以及聚合类型(数组和结构体等),在此基础上,我们就可以声明变量。我们平时经常说定义一个某种类型的变量,其实这样说不确切,应该说是声明变量。

变量声明的基本形式是:

说明符(一个或多个)声明表达式列表

C语言中对指针的声明比较有代表性,我们来看一下:

比如声明一个指向int型的指针a:int*a;

这个语句表示表达式*a产生的结果类型是int,而我们又知道*操作符执行的是间接访问操作,所以可以推断a肯定是一个指向int的指针。

C语言在本质上是一种自由形式的语言,它给了程序员很大的空间,我们同样可以这样写:int*a,这个声明与int*a时一个意思,而且似乎更为清楚,a被声明为类型为int*的指针(实则不然),这会诱导我们这样声明三个指向int型的指针:

也许你会很自然的以为这条语句把三个变量a、b、c都声明为指向整型的指针,但是事实上我们被它的形式愚弄了,星号实际上是表达式*a的一部分,只对这个标识符有用,a是一个指针,但是b和c都只是普通的整型而已,要声明三指针,这样写是可以的:

从这个简单的例子我们可以看出C语言的声明规则多么具有迷惑性,呵呵,这也是C语言饱受批*的地方之一,但这决定与语言本身的设计哲学,我们无法改变,要想用好C语言,我们必须掌握它的语法规则。

我们都知道它把f声明为一个函数,它的返回值是一个整数。

要想推断出它的含义,我们必须知道*fun()是如何求值的。首先执行的是函数调用操作符(),因为它的优先级高于间接访问操作符*,所以fun是一个函数,它的返回值类型是一个指向整型的指针。

再看一个更为有趣的声明:

这个声明有两对括号,每对括号的含义不同。第二对括号是函数调用操作符,但是第一对只起到聚组的作用。它导致间接访问在函数调用之前进行,使fun是一个函数指针,它所指向的函数返回一个整型值。

那么现在这个声明应该很容易分析出来了

fun还是一个函数指针,只是所指向的函数返回的是一个整型指针。

先写到这里,对C语言的声明之旅才刚刚开始,下回我们将在中级篇里讨论更有趣的话题!

C语言声明学习之中级篇

C语言的声明存在的最大的问题就是你无法以一种人们所习惯的自然方式从左到右阅读一个声明,程序员必须记住特殊的规则才能推断出int*p[3]到底是一个int类型的指针数组还是一个指向int数组的指针。

对于这样一个声明,我们应该如何分析?

首先,f是一个函数,其次,它的返回值是一个整型数组。貌似就是这样啊,但实际上,这个例子隐藏着一个陷阱,因为这个声明是非法的,呵呵,在我们的C语言里,函数只能返回变量值,不能返回数组。

还有一个让人颇费脑筋的声明:

这里,f应该是一个数组,数组的元素类型是返回值为整型的函数。请不要对它看似正确的表面所迷惑,其实这个声明也是非法的!因为数组元素必须具有相同的长度,但是不同的函数显然可能具有不同的长度吧,呵呵。

在被C语言迷幻的声明形式欺骗两次之后,现在是不是有些草木皆兵了?让我们乘热打铁,再看一个声明:

请你分析一下它的含义?首先,你能否确定它是对的还是错的?

首先,我们必须找到所有的操作符,然后按照正确的次序执行它们。这里有两对括号,它们分别具有不同的含义。第一个括号内的表达式*f[]首先进行求值,所以f是一个元素为某种类型的指针的数组;末尾的括号是函数调用操作符,所以我们可以肯定f是一个数组,数组元素的类型是函数指针,它所指向的函数的返回值是一个整型值。

清楚了上面这个声明,下面这个声明应该就比较容易分析了:

这个声明创建了一个指针数组,指针所指向的类型是返回值为整型指针的函数。

ANSIC推荐我们使用完整的函数原型,使声明更为明确,例如:

前者把f声明为一个函数指针,它所指向的函数接受两个参数,分别是一个整型数和浮点型值,并返回一个整数。

后者把g声明为一个数组,数组的元素类型是一个函数指针,它所指向的函数接受两个参数,分别是一个整型数和浮点型值,并返回一个整型指针。尽管原型增加了声明的复杂度,但是ANSIC还是大力提倡这个风格,因为这样可以向编译器提供一些额外的信息。

在中级篇的最后,给大家推荐一个实用的C语言工具:cdecl,这个程序可用于所有UNIX操作系统,它可以将C语言的声明翻译成通俗易懂的语言,并可以将C语言声明的语法转换成为具体的C语言声明。

可以看到,cdecl为我们解释了int(*(*f)())[10]这个声明的含义,有了这个工具,不管我们遇到怎样诡异的C语言声明,都可以从容应对了吧,当然,我们可以给cdecl一个声明的语法,把上面一段解释输入进去,就可以看到:

可见,cdecl又帮我们把这段通俗的解释转换成为专业的C语言的声明。

怎么样,这个工具是不是很好用,如果你的系统里面还没有这个工具的话,你是不是应该赶快安装一个呢?让它成为你学习C语言的好帮手吧。

C语言声明学习之高级篇

C语言的设计哲学要求对象的声明形式和它的使用形式尽可能相似,比如一个int类型的指针数组被声明为int*p[3];并以*p[i]这样的表达式引用或者使用指针所指向的int数据,所以它的声明形式和使用形式非常相似。这样做的好处是各种不同操作符的优先级在“声明”和“使用”时是一样的,而缺点恰好在与C语言的操作符的优先级过于复杂(有15级或者更多,取决于你怎么算),这是C语言设计不当、过于复杂之处。

实际上有些关键字只能出现在声明中,而不是使用中,比如volatile和const等,这使得声明形式和使用形式能完全对的上号的例子越来越少了。如果想要把什么东西强制转换为指向数组的指针,就不得不使用下面的语句来表示这个强制类型转换:

这个强制类型转换看上去很滑稽,星号两边的括号看上去可有可无,但是如果去掉就会变成非法语句。

涉及指针和const得声明可能会有下面几种不同的组合:

前两种情况,指针所指向的对象是只读的,而最后一种情况下指针是只读的。

如果我们想让对象和指针都是只读的,那么下面两种声明都能做到这一点:

经过初级篇、中级篇一直到前面的学习我们发现其实分析一个声明就是按照操作符优先级规则把声明分解开来,分别解释各个组成部分。要理解一个声明,必须要懂得其中的优先级规则,下面是《C专家编程》中总结的C语言声明的优先级规则:

A声明从它的名字开始读取,然后按照优先级顺序依次读取;

B优先级从高到低依次是:

B.1声明中被括号括起来的那部分;

B.2后缀操作符:括号()表示这是一个函数,而方括号[]表示这是一个数组;

B.3前缀操作符:星号*标识“指向……的指针”;

C如果const和(或者)volatile关键字的后面紧跟类型说明符(如int,long等),那么它作用于类型说明符,在其他情况下,const和(或)volatile关键字作用于它左边紧邻的指针星号。

现在,让我们用优先级规则来分析C语言的一个较复杂的声明:

B.1 (*next) ——next为一个指向……的指针

B.2 (*next)() ——next是一个函数指针

B.3 *(*next)()——next是一个函数指针,这个函数返回一个指向……的指针

C char*const——指向字符类型的常量指针

故char*const*(*next)();的含义就是:next是一个函数指针,这个函数返回一个指向字符类型的常量指针。

C语言在单片机开发中的几个问题

开发应用中,已逐渐开始引入高级语言,C语言就是其中的一种。对用惯了汇编的人来说,总觉得高级语言’可控性’不好,不如汇编那样随心所欲。但是只要我们掌握了一定的C语言知识,有些东西还是容易做出来的,以下是笔者实际工作中遇到的几个问题,希望对初学C51者有所帮助。

一、C51热启动代码的编制

对于工业控制计算机,往往设有有看门狗电路,当看门狗动作,使计算机复位,这就是热启动。热启动时,一般不允许从头开始,这将导致现有的已测量到或计算到的值复位,导致系统工作异常。因而在程序必须判断是热启动还是冷启动,常用的方法是:确定某内存单位为标志位(如0x7f位和0x7e位),启动时首先读该内存单元的内容,如果它等于一个特定的值(例如两个内存单元的都是0xaa),就认为是热启动,否则就是冷启动,程序执行初始化部份,并将0xaa赋与这两个内存单元。

根据以上的设计思路,编程时,设置一个指针,让其指向特定的内存单元如0x7f,然后在程序中判断,程序如下:

{/*热启动的处理*/

然而实际调试中发现,无论是热启动还是冷启动,开机后所有内存单元的值都被复位为0,当然也实现不了热启动的要求。这是为什么呢?原来,用C语言编程时,开机时执行的代码并非是从main()函数的第一句语句开始的,在main()函数的第一句语句执行前要先执行一段’起始代码’。正是这段代码执行了清零的工作。C编译程序提供了这段起始代码的源程序,名为CSTARTUp.A51,打开这个文件,可以看到如下代码:

可见,在执行到判断是否热启动的代码之前,起始代码已将所有内存单元清零。如何解决这个问题呢?好在启动代码是可以更改的,方法是:修改startup.a51源文件,然后用编译程序所附带的a51.exe程序对startup.a51编译,得到startup.obj文件,然后用这段代码代替原来的起始代码。具体步骤是(设C源程序名为HOTSTART.C):

对于startup.a51的修改,根据自已的需要进行,如将IDATALENEQU80H中的80H改为70H,就可以使6F到7F的16字节内存不被清零。

二、直接调用EpROM中已固化的程序

笔者用的仿真机,由6位数码管显示,在内存DE00H处放显示子程序,只要将要显示的数放入显示缓冲区,然后调用这个子程序就可以使用了,汇编指令为:

在用C语言编程时,如何实现这一功能呢?C语言中有指向函数的指针这一概念,可以利用这种指针来实现用函数指针调用函数。指向函数的指针变量的定义格式为:

类型标识符(*指针变量名)();

在定义好指针后就可以给指针变量赋值,使其指向某个函数的开始存地址,然后用

(*指针变量名)()即可调用这个函数。如下例:

三、将浮点数转化为字符数组

笔者在编制应用程序时有这样的要求:将运算的结果(浮点数)存入EEpROM中。我们知道,浮点数在C语言中是以IEEE格式存储的,一个浮点数占用四个字节,例如浮点数34.526存为(160,26,10,66)这四个数。要将一个浮点数存入EEpROM,实际上就是要存这四个数。那么如何在程序中得到一个浮点数的组成数呢?

浮点数在存储时,是存储连续的字节中的,只要设法找到存储位置,就可以得到这些数了。可以定义一个void的指针,将此指针指向需要存储的浮点数,然后将此指针强制转化为char型,这样,利用指针就可以得到组成该浮点数的各个字节的值了。具体程序如下:

ucharx[4];/*定义字符数组,准备存储浮点数的四个字节*、

如果已将数存入EEpROM,要将其取出合并,方法也是一样,可参考下面的程序。

C语言编译过程总结详解

链接过程要把我们编写的一个c程序(源代码)转换成可以在硬件上运行的程序(可执行代码),需要进行编译和链接。编译就是把文本形式源代码翻译为机器语言形式的目标文件的过程。链接是把目标文件、操作系统的启动代码和用到的库文件进行组织形成最终生成可执行代码的过程。过程图解如下:

从图上可以看到,整个代码的编译过程分为编译和链接两个过程,编译对应图中的大括号括起的部分,其余则为链接过程。

编译过程又可以分成两个阶段:编译和会汇编。

编译是读取源程序(字符流),对之进行词法和语法的分析,将高级语言指令转换为功能等效的汇编代码,源文件的编译过程包含两个主要阶段:

第一个阶段是预处理阶段,在正式的编译阶段之前进行。预处理阶段将根据已放置在文件中的预处理指令来修改源文件的内容。如#include指令就是一个预处理指令,它把头文件的内容添加到.cpp文件中。这个在编译之前修改源文件的方式提供了很大的灵活性,以适应不同的计算机和操作系统环境的限制。一个环境需要的代码跟另一个环境所需的代码可能有所不同,因为可用的硬件或操作系统是不同的。在许多情况下,可以把用于不同环境的代码放在同一个文件中,再在预处理阶段修改代码,使之适应当前的环境。

主要是以下几方面的处理:

对于这种伪指令,预编译所要做的是将程序中的所有a用b替换,但作为字符串常量的a则不被替换。还有#undef,则将取消对某个宏的定义,使以后该串的出现不再被替换。

这些伪指令的引入使得程序员可以通过定义不同的宏来决定编译程序对哪些代码进行处理。预编译程序将根据有关的文件,将那些不必要的代码过滤掉。

在头文件中一般用伪指令#define定义了大量的宏(最常见的是字符常量),同时包含有各种外部符号的声明。采用头文件的目的主要是为了使某些定义可以供多个不同的C源程序使用。因为在需要用到这些定义的C源程序中,只需加上一条#include语句即可,而不必再在此文件中将这些定义重复一遍。预编译程序将把头文件中的定义统统都加入到它所产生的输出文件中,以供编译程序对之进行处理。包含到c源程序中的头文件可以是系统提供的,这些头文件一般被放在/usr/include目录下。在程序中#include它们要使用尖括号(<>)。另外开发人员也可以定义自己的头文件,这些文件一般与c源程序放在同一目录下,此时在#include中要用双引号("")。

(4)特殊符号,预编译程序可以识别一些特殊的符号。

例如在源程序中出现的LINE标识将被解释为当前行号(十进制数),FILE则被解释为当前被编译的C源程序的名称。预编译程序对于在源程序中出现的这些串将用合适的值进行替换。

预编译程序所完成的基本上是对源程序的“替代”工作。经过此种替代,生成一个没有宏定义、没有条件编译指令、没有特殊符号的输出文件。这个文件的含义同没有经过预处理的源文件是相同的,但内容有所不同。下一步,此输出文件将作为编译程序的输出而被翻译成为机器指令。

第二个阶段编译、优化阶段,经过预编译得到的输出文件中,只有常量;如数字、字符串、变量的定义,以及C语言的关键字,如main,if,else,for,while,{,},+,-,*,\等等。

编译程序所要作得工作就是通过词法分析和语法分析,在确认所有的指令都符合语法规则之后,将其翻译成等价的中间代示或汇编代码。

优化处理是编译系统中一项比较艰深的技术。它涉及到的问题不仅同编译技术本身有关,而且同机器的硬件环境也有很大的关系。优化一部分是对中间代码的优化。这种优化不依赖于具体的计算机。另一种优化则主要针对目标代码的生成而进行的。

对于前一种优化,主要的工作是删除公共表达式、循环优化(代码外提、强度削弱、变换循环控制条件、已知量的合并等)、复写传播,以及无用赋值的删除,等等。

后一种类型的优化同机器的硬件结构密切相关,最主要的是考虑是如何充分利用机器的各个硬件寄存器存放的有关变量的值,以减少对于内存的访问次数。另外,如何根据机器硬件执行指令的特点(如流水线、RISC、CISC、VLIW等)而对指令进行一些调整使目标代码比较短,执行的效率比较高,也是一个重要的研究课题。

汇编实际上指把汇编语言代码翻译成目标机器指令的过程。对于被翻译系统处理的每一个C语言源程序,都将最终经过这一处理而得到相应的目标文件。目标文件中所存放的也就是与源程序等效的目标的机器语言代码。目标文件由段组成。通常一个目标文件中至少有两个段:

代码段:该段中所包含的主要是程序的指令。该段一般是可读和可执行的,但一般却不可写。

数据段:主要存放程序中要用到的各种全局变量或静态的数据。一般数据段都是可读,可写,可执行的。

UNIX环境下主要有三种类型的目标文件:

其中包含有适合于其它目标文件链接来创建一个可执行的或者共享的目标文件的代码和数据。

这种文件存放了适合于在两种上下文里链接的代码和数据。第一种是链接程序可把它与其它可重定位文件及共享的目标文件一起处理来创建另一个目标文件;第二种是动态链接程序将它与另一个可执行文件及其它的共享目标文件结合到一起,创建一个进程映象。

它包含了一个可以被操作系统创建一个进程来执行之的文件。汇编程序生成的实际上是第一种类型的目标文件。对于后两种还需要其他的一些处理方能得到,这个就是链接程序的工作了。

由汇编程序生成的目标文件并不能立即就被执行,其中可能还有许多没有解决的问题。

例如,某个源文件中的函数可能引用了另一个源文件中定义的某个符号(如变量或者函数调用等);在程序中可能调用了某个库文件中的函数,等等。所有的这些问题,都需要经链接程序的处理方能得以解决。

链接程序的主要工作就是将有关的目标文件彼此相连接,也即将在一个文件中引用的符号同该符号在另外一个文件中的定义连接起来,使得所有的这些目标文件成为一个能够诶操作系统装入执行的统一整体。

根据开发人员指定的同库函数的链接方式的不同,链接处理可分为两种:

在这种链接方式下,函数的代码将从其所在地静态链接库中被拷贝到最终的可执行程序中。这样该程序在被执行时这些代码将被装入到该进程的虚拟地址空间中。静态链接库实际上是一个目标文件的集合,其中的每个文件含有库中的一个或者一组相关函数的代码。

在此种方式下,函数的代码被放到称作是动态链接库或共享对象的某个目标文件中。链接程序此时所作的只是在最终的可执行程序中记录下共享对象的名字以及其它少量的登记信息。在此可执行文件被执行时,动态链接库的全部内容将被映射到运行时相应进程的虚地址空间。动态链接程序将根据可执行程序中记录的信息找到相应的函数代码。

对于可执行文件中的函数调用,可分别采用动态链接或静态链接的方法。使用动态链接能够使最终的可执行文件比较短小,并且当共享对象被多个进程使用时能节约一些内存,因为在内存中只需要保存一份此共享对象的代码。但并不是使用动态链接就一定比使用静态链接要优越。在某些情况下动态链接可能带来一些性能上损害。

我们在linux使用的gcc编译器便是把以上的几个过程进行捆绑,使用户只使用一次命令就把编译工作完成,这的确方便了编译工作,但对于初学者了解编译过程就很不利了,下图便是gcc代理的编译过程:

将.c文件转化成.i文件

使用的gcc命令是:gcc–E

对应于预处理命令cpp

将.c/.h文件转换成.s文件

使用的gcc命令是:gcc–S

对应于编译命令cc–S

将.s文件转化成.o文件

使用的gcc命令是:gcc–c

将.o文件转化成可执行程序

使用的gcc命令是:gcc

总结起来编译过程就上面的四个过程:预编译、编译、汇编、链接。Lia了解这四个过程中所做的工作,对我们理解头文件、库等的工作过程是有帮助的,而且清楚的了解编译链接过程还对我们在编程时定位错误,以及编程时尽量调动编译器的检测错误会有很大的帮助的。

关于C语言,电子元器件资料就介绍完了,您有什么想法可以联系小编。

100道经典的c语言面试题[通俗易懂]100条经典C语言笔试题目 题目来源:1、中兴、华为、慧通、英华达、微软亚洲技术中心等中外企业面试题目;2、C语言面试宝典(林锐《高质量编程第三版》)。说明:1、部分C语言面试题中可能会参杂部分和C++相关的知识,为了保持题目的灵活性故保留,但选题最终还是会以C语言题目为主体;2、以上公司的面试题目已成为国内中小型企业公司出题模板;3、由于本人的能力有限加上…

大家好,又见面了,我是你们的朋友全栈君。

100 条经典C语言笔试题目

1、中兴、华为、慧通、英华达、微软亚洲技术中心等中
2、C 语言面试宝典(林锐《高质量编程第三版》)。
1、部分C 语言面试题中可能会参杂部分和C++ 相关的知
识,为了保持题目的灵活性故保留,但选题最终还是
会以C 语言题目为主体;
2、以上公司的面试题目已成为国内中小型企业公司出题
3、由于本人的能力有限加上时间仓促,本课件肯定存在

不足之处,恳请各位同学批评指正。

【正版授权,激活自己账号】:

【官方授权 正版激活】:

我要回帖

更多关于 malloc数组 的文章

 

随机推荐